Suppr超能文献

使基于发夹结构的RNA干扰载体中的变量最小化,揭示了短发夹RNA的效能。

Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs.

作者信息

Boudreau Ryan L, Monteys Alex Mas, Davidson Beverly L

机构信息

Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

RNA. 2008 Sep;14(9):1834-44. doi: 10.1261/rna.1062908. Epub 2008 Aug 12.

Abstract

RNA interference (RNAi) is a cellular process regulating gene expression and participating in innate defense in many organisms. RNAi has also been utilized as a tool to query gene function and is being developed as a therapeutic strategy for several diseases. Synthetic small interfering (siRNAs) or expressed stem-loop RNAs (short-hairpin RNAs [shRNAs] or artificial microRNAs [miRNAs]) have been delivered to cultured cells and organisms to inhibit expression of a variety of genes. A persistent question in the field, however, is which RNAi expression system is most suitable for distinct applications. To date, shRNA- and artificial miRNA-based strategies have been compared with conflicting results. In prior comparisons, sequences required for efficient RNAi processing and loading of the intended antisense strand into the RNAi-induced silencing complex (RISC) were not considered. We therefore revisited the shRNA-miRNA comparison question. Initially, we developed an improved artificial miRNA vector and confirmed the optimal shRNA configuration by altering structural features of these RNAi substrates. Subsequently, we engineered and compared shRNA- and miRNA-based RNAi expression vectors that would be processed to yield similar siRNAs that exhibit comparable strand biasing. Our results demonstrate that when comparison variables are minimized, the shRNAs tested were more potent than the artificial miRNAs in mediating gene silencing independent of target sequence and experimental setting (in vitro and in vivo). In addition, we show that shRNAs are expressed at considerably higher levels relative to artificial miRNAs, thus providing mechanistic insight to explain their increased potency.

摘要

RNA干扰(RNAi)是一种细胞过程,可调节基因表达并参与许多生物体的天然防御。RNAi也已被用作查询基因功能的工具,并正在开发成为多种疾病的治疗策略。合成的小干扰RNA(siRNA)或表达的茎环RNA(短发夹RNA [shRNA]或人工微小RNA [miRNA])已被递送至培养的细胞和生物体中,以抑制多种基因的表达。然而,该领域一直存在的一个问题是,哪种RNAi表达系统最适合不同的应用。迄今为止,基于shRNA和人工miRNA的策略已经进行了比较,但结果相互矛盾。在先前的比较中,未考虑有效RNAi加工以及将预期的反义链加载到RNA干扰诱导沉默复合体(RISC)中所需的序列。因此,我们重新审视了shRNA与miRNA的比较问题。首先,我们开发了一种改进的人工miRNA载体,并通过改变这些RNAi底物的结构特征来确认最佳的shRNA构型。随后,我们构建并比较了基于shRNA和miRNA的RNAi表达载体,这些载体经过加工后会产生相似的siRNA,它们表现出可比的链偏向性。我们的结果表明,当比较变量最小化时,所测试的shRNA在介导基因沉默方面比人工miRNA更有效,且与靶序列和实验设置(体外和体内)无关。此外,我们表明,相对于人工miRNA,shRNA的表达水平要高得多,从而为解释它们增强的效力提供了机制上的见解。

相似文献

1
Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs.
RNA. 2008 Sep;14(9):1834-44. doi: 10.1261/rna.1062908. Epub 2008 Aug 12.
2
pSM155 and pSM30 vectors for miRNA and shRNA expression.
Methods Mol Biol. 2009;487:205-19. doi: 10.1007/978-1-60327-547-7_10.
3
Artificial miRNAs as therapeutic tools: Challenges and opportunities.
Wiley Interdiscip Rev RNA. 2021 Jul;12(4):e1640. doi: 10.1002/wrna.1640. Epub 2021 Jan 1.
4
A quick and efficient approach for gene silencing by using triple putative microRNA-based short hairpin RNAs.
Mol Cell Biochem. 2009 Mar;323(1-2):81-9. doi: 10.1007/s11010-008-9966-3. Epub 2008 Nov 27.
5
miRNA and shRNA expression vectors based on mRNA and miRNA processing.
Methods Mol Biol. 2013;936:195-207. doi: 10.1007/978-1-62703-083-0_16.
6
miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction.
Mol Ther. 2015 Sep;23(9):1465-74. doi: 10.1038/mt.2015.113. Epub 2015 Jun 17.
10
Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo.
Mol Ther. 2009 Jan;17(1):169-75. doi: 10.1038/mt.2008.231. Epub 2008 Nov 11.

引用本文的文献

1
AAV-based delivery of RNAi targeting ataxin-2 improves survival and pathology in TDP-43 mice.
Nat Commun. 2025 Jun 25;16(1):5334. doi: 10.1038/s41467-025-60497-8.
2
Role of c-ABL in DENV-2 Infection and Actin Remodeling in Vero Cells.
Int J Mol Sci. 2025 Apr 29;26(9):4206. doi: 10.3390/ijms26094206.
3
Current trends in gene therapy to treat inherited disorders of the brain.
Mol Ther. 2025 May 7;33(5):1988-2014. doi: 10.1016/j.ymthe.2025.03.057. Epub 2025 Apr 2.
4
Engineering strategies to safely drive CAR T-cells into the future.
Front Immunol. 2024 Jun 19;15:1411393. doi: 10.3389/fimmu.2024.1411393. eCollection 2024.
5
-amplifying RNA expressing functional miRNA mediates target gene suppression and simultaneous transgene expression.
Mol Ther Nucleic Acids. 2024 Mar 5;35(2):102162. doi: 10.1016/j.omtn.2024.102162. eCollection 2024 Jun 11.
6
NADPH Oxidase 3: Beyond the Inner Ear.
Antioxidants (Basel). 2024 Feb 8;13(2):219. doi: 10.3390/antiox13020219.
8
Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform.
Mol Ther Nucleic Acids. 2023 Sep 20;34:102038. doi: 10.1016/j.omtn.2023.102038. eCollection 2023 Dec 12.
9
Gene Therapy for Rhodopsin Mutations.
Cold Spring Harb Perspect Med. 2022 Aug 8;12(9). doi: 10.1101/cshperspect.a041283.
10
miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance.
Int J Mol Sci. 2022 Apr 22;23(9):4657. doi: 10.3390/ijms23094657.

本文引用的文献

1
Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5868-73. doi: 10.1073/pnas.0801775105. Epub 2008 Apr 8.
2
Defining the optimal parameters for hairpin-based knockdown constructs.
RNA. 2007 Oct;13(10):1765-74. doi: 10.1261/rna.599107. Epub 2007 Aug 13.
3
Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC.
Nucleic Acids Res. 2007;35(15):5154-64. doi: 10.1093/nar/gkm543. Epub 2007 Jul 26.
4
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex.
Cell. 2006 Jun 2;125(5):887-901. doi: 10.1016/j.cell.2006.03.043.
5
Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways.
Nature. 2006 May 25;441(7092):537-41. doi: 10.1038/nature04791.
6
Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155.
Nucleic Acids Res. 2006 Apr 13;34(7):e53. doi: 10.1093/nar/gkl143.
7
3' UTR seed matches, but not overall identity, are associated with RNAi off-targets.
Nat Methods. 2006 Mar;3(3):199-204. doi: 10.1038/nmeth854.
8
Second-generation shRNA libraries covering the mouse and human genomes.
Nat Genet. 2005 Nov;37(11):1281-8. doi: 10.1038/ng1650. Epub 2005 Oct 2.
9
Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences.
J Biol Chem. 2005 Jul 29;280(30):27595-603. doi: 10.1074/jbc.M504714200. Epub 2005 Jun 1.
10
RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model.
Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5820-5. doi: 10.1073/pnas.0501507102. Epub 2005 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验