Centre for Vision, Speech and Signal Processing, Faculty of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
Phys Med Biol. 2010 Mar 21;55(6):1677-99. doi: 10.1088/0031-9155/55/6/010. Epub 2010 Mar 2.
Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.
薄组织放射自显影是一种成像方式,其中将离体组织切片直接放置在放射自显影胶片上。这些组织切片包含与研究中的特定生物分子结合的放射性标记配体。这种放射性配体发射β-或β+粒子,使胶片中的银卤化物晶体发生电离。使用低能放射性同位素(如 (3)H)可以获得高空间分辨率的放射自显影图像,其固有空间分辨率可以达到 0.1-1 微米。过去几年来,已经提出了几种数字替代方案来替代传统胶片,但它们的空间分辨率尚未达到胶片的水平,尽管基于硅的成像技术与传统胶片相比具有更高的灵敏度。本工作将展示像素大小如何成为实现低能非准直β成像高空间分辨率的关键参数。在本工作中,我们还研究了阻碍基于硅的技术实现空间分辨率的混杂因素。研究考虑了硅中的电荷扩散和探测器噪声,并将其应用于放射自显影中常用的一系列放射性同位素。最后,针对特定技术和特定放射性同位素,建议了一种获得最佳空间分辨率的最佳探测器几何形状。