Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097 Vienna, Austria.
Acta Neuropathol. 2010 Apr;119(4):389-408. doi: 10.1007/s00401-010-0658-1. Epub 2010 Mar 3.
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
神经退行性痴呆的神经病理学诊断是通过适应神经解剖学、生物化学、细胞和分子生物学的结果发展而来的。内细胞和细胞外嗜银结构的里程碑发现,可视化蛋白质沉积,启动了基于蛋白质的分类。广泛应用免疫组织化学和生化研究表明,(1)存在固有疾病的蛋白质的修饰(磷酸化、硝化、寡聚体、蛋白酶抗性,有或没有淀粉样特征;切割产物),(2)仅积累单一蛋白质的疾病形式相当罕见,(3)一些蛋白质的修饰逃避了目前的神经病理学诊断程序。在这篇综述中,我们通过展示一系列以各种蛋白质的各种修饰在各种位置沉积为特征的疾病类型,总结了神经病理学如何与生物化学一起促进疾病分型。神经病理学可能有助于阐明脑病理学如何通过上调生理形式或捕获不同蛋白质来改变体液中蛋白质的可检测性。至少五种最相关蛋白质(β淀粉样蛋白、朊病毒蛋白、tau、α-突触核蛋白和 TDP-43)的修饰,辅以进一步“吸引”蛋白质的分析,对于用不同方法同时进行评估至关重要。这应补充与发病机制相关的生物标志物的检测,以及神经影像学和遗传分析,以获得高度个性化的诊断概况。基于蛋白质沉积模式和免疫组织化学或生化可检测的蛋白质修饰(“代码”)定义患者群可能具有更高的预后预测价值,可能有助于监测治疗,并为发病机制的研究开辟新途径。