Department of Chemical Engineering and Geosciences, Luleå University of Technology, Sweden.
Biotechnol Bioeng. 2010 Jun 15;106(3):422-31. doi: 10.1002/bit.22709.
Biomining is the use of microorganisms to catalyze metal extraction from sulfide ores. However, the available water in some biomining environments has high chloride concentrations and therefore, chloride toxicity to ferrous oxidizing microorganisms has been investigated. Batch biooxidation of Fe(2+) by a Leptospirillum ferriphilum-dominated culture was completely inhibited by 12 g L(-1) chloride. In addition, the effects of chloride on oxidation kinetics in a Fe(2+) limited chemostat were studied. Results from the chemostat modeling suggest that the chloride toxicity was attributed to affects on the Fe(2+) oxidation system, pH homeostasis, and lowering of the proton motive force. Modeling showed a decrease in the maximum specific growth rate (micro(max)) and an increase in the substrate constant (K(s)) with increasing chloride concentrations, indicating an effect on the Fe(2+) oxidation system. The model proposes a lowered maintenance activity when the media was fed with 2-3 g L(-1) chloride with a concomitant drastic decrease in the true yield (Y(true)). This model helps to understand the influence of chloride on Fe(2+) biooxidation kinetics.
生物采矿是利用微生物来催化从硫化矿石中提取金属。然而,一些生物采矿环境中的可用水含有高浓度的氯化物,因此,已经研究了氯化物对亚铁氧化微生物的毒性。由 Leptospirillum ferriphilum 主导的培养物进行的 Fe(2+)分批生物氧化被 12 g/L 的氯化物完全抑制。此外,还研究了氯化物对 Fe(2+)限制恒化器中氧化动力学的影响。恒化器模型的结果表明,氯化物的毒性归因于对 Fe(2+)氧化系统、pH 动态平衡和质子动力势降低的影响。模型表明,随着氯化物浓度的增加,最大比生长速率(micro(max))降低,底物常数(K(s))增加,表明对 Fe(2+)氧化系统有影响。该模型提出,当培养基中添加 2-3 g/L 的氯化物时,维持活性降低,同时真实产率(Y(true))急剧下降。该模型有助于理解氯化物对 Fe(2+)生物氧化动力学的影响。