Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain.
J Environ Manage. 2010 Jun;91(6):1255-67. doi: 10.1016/j.jenvman.2010.01.014. Epub 2010 Mar 3.
Selection of reservoir location, the floodable basin forest handling, and the design of dam structures devoted to water supply (e.g. water outlets) constitute relevant features which strongly determine water quality and frequently demand management strategies to be adopted. Although these crucial aspects should be carefully examined during dam design before construction, currently the development of ad hoc limnological studies tailoring dam location and dam structures to the water quality characteristics expected in the future reservoir is not typical practice. In this study, we use numerical simulation to assist on the design of a new dam project in Spain with the aim of maximizing the quality of the water supplied by the future reservoir. First, we ran a well-known coupled hydrodynamic and biogeochemical dynamic numerical model (DYRESM-CAEDYM) to simulate the potential development of anoxic layers in the future reservoir. Then, we generated several scenarios corresponding to different potential hydraulic conditions and outlet configurations. Second, we built a simplified numerical model to simulate the development of the hypolimnetic oxygen content during the maturation stage after the first reservoir filling, taking into consideration the degradation of the terrestrial organic matter flooded and the adoption of different forest handling scenarios. Results are discussed in terms of reservoir design and water quality management. The combination of hypolimnetic withdrawal from two deep outlets and the removal of all the valuable terrestrial vegetal biomass before flooding resulted in the best water quality scenario.
水库位置选择、可淹没盆地森林处理以及专门用于供水的大坝结构设计(例如出水口)是决定水质的重要因素,通常需要采取管理策略。尽管这些关键方面应在大坝设计阶段进行仔细检查,但目前针对未来水库预期水质特征定制大坝位置和大坝结构的特别湖沼学研究的发展并不常见。在这项研究中,我们使用数值模拟来协助西班牙的一个新大坝项目的设计,旨在最大限度地提高未来水库供水的质量。首先,我们运行了一个著名的耦合水动力和生物地球化学动力数值模型(DYRESM-CAEDYM),以模拟未来水库中缺氧层的潜在发展。然后,我们生成了几个对应不同潜在水力条件和出水口配置的场景。其次,我们建立了一个简化的数值模型,以模拟第一次水库蓄水后的成熟阶段中底层水体含氧量的发展,同时考虑了淹没的陆地有机物质的降解和不同森林处理场景的采用。结果从水库设计和水质管理方面进行了讨论。从两个深出水口抽取底层水体并在淹没前清除所有有价值的陆地植物生物质的组合产生了最佳的水质方案。