Suppr超能文献

使用 k 空间稀疏矩阵 (kSPA) 进行任意轨迹的自动校准并行成像重建。

Auto-calibrated parallel imaging reconstruction for arbitrary trajectories using k-space sparse matrices (kSPA).

机构信息

Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, NC 27705, USA.

出版信息

IEEE Trans Med Imaging. 2010 Mar;29(3):950-9. doi: 10.1109/TMI.2010.2042299.

Abstract

Image acquisition of magnetic resonance imaging (MRI) can be accelerated by using multiple receiving coils simultaneously. The problem of reconstructing an unaliased image from partially sampled k-space data can be formulated as a large system of sparse linear equations. The k-space sparse matrix (kSPA) algorithm proposes to solve the system of equations by finding a sparse approximate inverse. This algorithm has been shown to accelerate the image reconstruction for a large number of coils. The original kSPA algorithm requires knowledge of coil sensitivities. Here, we propose and demonstrate an auto-calibrated kSPA algorithm that does not require the explicit computation of the coil sensitivity maps. We have also shown that calibration data, in principle, can be acquired at any region of k-space. This property applies to arbitrary sampling trajectories and all reconstruction algorithms based on k-space. In practice, because of its higher SNR, calibration data acquired at the center of k-space performed more favorably. Such auto-calibration can be advantageous in cases where an accurate sensitivity map is difficult to obtain.

摘要

磁共振成像(MRI)的图像采集可以通过同时使用多个接收线圈来加速。从部分采样的 k 空间数据重建无混叠图像的问题可以表述为一个大型稀疏线性方程组。k 空间稀疏矩阵(kSPA)算法通过找到稀疏近似逆来解决方程组。该算法已被证明可以加速大量线圈的图像重建。原始的 kSPA 算法需要线圈灵敏度的知识。在这里,我们提出并演示了一种不需要显式计算线圈灵敏度图的自动校准 kSPA 算法。我们还表明,校准数据原则上可以在 k 空间的任何区域采集。该属性适用于任意采样轨迹和基于 k 空间的所有重建算法。在实践中,由于其更高的 SNR,在 k 空间中心采集的校准数据表现更优。在难以获得准确灵敏度图的情况下,这种自动校准可能具有优势。

相似文献

1
Auto-calibrated parallel imaging reconstruction for arbitrary trajectories using k-space sparse matrices (kSPA).
IEEE Trans Med Imaging. 2010 Mar;29(3):950-9. doi: 10.1109/TMI.2010.2042299.
2
3
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med. 2002 Jun;47(6):1202-10. doi: 10.1002/mrm.10171.
7
Optimization of hyperparameters for SMS reconstruction.
Magn Reson Imaging. 2020 Nov;73:91-103. doi: 10.1016/j.mri.2020.08.006. Epub 2020 Aug 22.
8
Derivative encoding for parallel magnetic resonance imaging.
Med Phys. 2011 Oct;38(10):5582-9. doi: 10.1118/1.3633908.
9
IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI.
IEEE Trans Med Imaging. 2024 Apr;43(4):1539-1553. doi: 10.1109/TMI.2023.3342156. Epub 2024 Apr 3.
10
Exact Calculation of Noise Maps and ${g}$ -Factor in GRAPPA Using a ${k}$ -Space Analysis.
IEEE Trans Med Imaging. 2018 Feb;37(2):480-490. doi: 10.1109/TMI.2017.2760921. Epub 2017 Oct 9.

引用本文的文献

1
Sparse Parallel MRI Based on Accelerated Operator Splitting Schemes.
Comput Math Methods Med. 2016;2016:1724630. doi: 10.1155/2016/1724630. Epub 2016 Sep 25.
2
Parallel reconstruction using null operations.
Magn Reson Med. 2011 Nov;66(5):1241-53. doi: 10.1002/mrm.22899. Epub 2011 May 20.

本文引用的文献

3
Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG).
Magn Reson Med. 2007 Dec;58(6):1257-65. doi: 10.1002/mrm.21435.
4
5
Direct parallel image reconstructions for spiral trajectories using GRAPPA.
Magn Reson Med. 2006 Aug;56(2):317-26. doi: 10.1002/mrm.20951.
6
Auto-calibrated parallel spiral imaging.
Magn Reson Med. 2006 Mar;55(3):619-25. doi: 10.1002/mrm.20811.
7
Advances in locally constrained k-space-based parallel MRI.
Magn Reson Med. 2006 Feb;55(2):431-8. doi: 10.1002/mrm.20757.
9
Rapid gridding reconstruction with a minimal oversampling ratio.
IEEE Trans Med Imaging. 2005 Jun;24(6):799-808. doi: 10.1109/TMI.2005.848376.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验