Suppr超能文献

并行磁共振成像的导数编码。

Derivative encoding for parallel magnetic resonance imaging.

机构信息

National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892-1527, USA.

出版信息

Med Phys. 2011 Oct;38(10):5582-9. doi: 10.1118/1.3633908.

Abstract

PURPOSE

To introduce a linear shift-invariant relationship between the partial derivatives of k space signals acquired using multichannel receive coils and to demonstrate that k space derivatives can be used for image unwrapping.

METHODS

Fourier transform of k space derivatives contains information on the spatial origins of aliased pixels; therefore, images can be reconstructed by k space derivatives. Fully sampled phantom and brain images acquired at 3 T using a standard eight channel receive coil were used to validate the k space derivatives theorem by unwrapping aliased images.

RESULTS

Derivative encoding leads to new methods for parallel imaging reconstruction in both k space and image domains. Noise amplification in sensitivity encoding image reconstruction, which is considered to produce the optimal SNR, can be further reduced using k space derivative encoding without making any assumptions on the characteristics of the images to be reconstructed.

CONCLUSIONS

This work demonstrated that the partial derivative of the k space signal acquired from one coil with respect to one direction can be expressed as a sum of partial derivatives of signals from multiple coils with respect to the perpendicular k space direction(s). This relationship between the partial derivatives of k space signals is linear and shift-invariant in the Cartesian coordinate system.

摘要

目的

介绍使用多通道接收线圈获得的 k 空间信号的偏导数之间的线性平移不变关系,并证明 k 空间导数可用于图像展开。

方法

k 空间导数的傅里叶变换包含了混叠像素空间起源的信息;因此,可以通过 k 空间导数重建图像。使用标准的八通道接收线圈在 3T 上采集完全采样的幻影和大脑图像,通过展开混叠图像来验证 k 空间导数定理。

结果

导数编码为 k 空间和图像域中的并行成像重建提供了新方法。灵敏度编码图像重建中的噪声放大被认为可以产生最佳信噪比,通过使用 k 空间导数编码,在不假设要重建的图像特征的情况下,可以进一步降低噪声放大。

结论

这项工作表明,从一个线圈相对于一个方向获得的 k 空间信号的偏导数可以表示为相对于垂直 k 空间方向(s)的多个线圈信号的偏导数的和。在笛卡尔坐标系中,k 空间信号的偏导数之间存在线性平移不变关系。

相似文献

4
Partial fourier shells trajectory for non-cartesian MRI.非笛卡尔 MRI 的部分傅里叶壳轨迹。
Phys Med Biol. 2019 Feb 6;64(4):04NT01. doi: 10.1088/1361-6560/aafcc5.

本文引用的文献

2
3
Accelerating SENSE using compressed sensing.利用压缩感知加速 SENSE。
Magn Reson Med. 2009 Dec;62(6):1574-84. doi: 10.1002/mrm.22161.
6
Extrapolation and correlation (EXTRACT): a new method for motion compensation in MRI.
IEEE Trans Med Imaging. 2009 Jan;28(1):82-93. doi: 10.1109/TMI.2008.927353.
8
Suppression of MRI truncation artifacts using total variation constrained data extrapolation.
Int J Biomed Imaging. 2008;2008:184123. doi: 10.1155/2008/184123.
10
A nonlinear regularization strategy for GRAPPA calibration.一种用于GRAPPA校准的非线性正则化策略。
Magn Reson Imaging. 2009 Jan;27(1):137-41. doi: 10.1016/j.mri.2008.05.005. Epub 2008 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验