Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, 97082 Wuerzburg, Germany.
J Biol Chem. 2010 Apr 30;285(18):13471-9. doi: 10.1074/jbc.M109.097394. Epub 2010 Mar 3.
Plasma membrane-borne pattern recognition receptors, which recognize microbe-associated molecular patterns and endogenous damage-associated molecular patterns, provide the first line of defense in innate immunity. In plants, leucine-rich repeat receptor kinases fulfill this role, as exemplified by FLS2 and EFR, the receptors for the microbe-associated molecular patterns flagellin and elongation factor Tu. Here we examined the perception of the damage-associated molecular pattern peptide 1 (AtPep1), an endogenous peptide of Arabidopsis identified earlier and shown to be perceived by the leucine-rich repeat protein kinase PEPR1. Using seedling growth inhibition, elicitation of an oxidative burst and induction of ethylene biosynthesis, we show that wild type plants and the pepr1 and pepr2 mutants, affected in PEPR1 and in its homologue PEPR2, are sensitive to AtPep1, but that the double mutant pepr1/pepr2 is completely insensitive. As a central body of our study, we provide electrophysiological evidence that at the level of the plasma membrane, AtPep1 triggers a receptor-dependent transient depolarization through activation of plasma membrane anion channels, and that this effect is absent in the double mutant pepr1/pepr2. The double mutant also fails to respond to AtPep2 and AtPep3, two distant homologues of AtPep1 on the basis of homology screening, implying that the PEPR1 and PEPR2 are responsible for their perception too. Our findings provide a basic framework to study the biological role of AtPep1-related danger signals and their cognate receptors.
质膜结合的模式识别受体,可识别微生物相关分子模式和内源性损伤相关分子模式,为先天免疫提供第一道防线。在植物中,富含亮氨酸重复受体激酶(LRR-RLKs)发挥了这一作用,其中 FLS2 和 EFR 是微生物相关分子模式 flagellin 和 elongation factor Tu 的受体。在这里,我们研究了损伤相关分子模式肽 1(AtPep1)的感知,这是一种先前被鉴定为拟南芥内源性肽的物质,被富含亮氨酸重复蛋白激酶 PEPR1 识别。通过幼苗生长抑制、氧化爆发的诱导和乙烯生物合成的诱导,我们表明野生型植物和 pepr1 和 pepr2 突变体对 AtPep1 敏感,pepr1 和 pepr2 突变体分别影响 PEPR1 和其同源物 PEPR2,但 pepr1/pepr2 双突变体完全不敏感。作为我们研究的核心内容,我们提供了电生理学证据,表明在质膜水平上,AtPep1 通过激活质膜阴离子通道触发受体依赖性瞬时去极化,而这种效应在 pepr1/pepr2 双突变体中不存在。双突变体也不能对 AtPep2 和 AtPep3 作出反应,这两种物质是根据同源性筛选确定的 AtPep1 的两个遥远同源物,这意味着 PEPR1 和 PEPR2 也负责它们的感知。我们的发现为研究 AtPep1 相关危险信号及其同源受体的生物学作用提供了一个基本框架。