CNRS, Université de Bordeaux, ICMCB, 87 avenue du, Dr A. Schweitzer, Pessac, F-33608, France.
Dalton Trans. 2010 Mar 21;39(11):2910-8. doi: 10.1039/b914841h. Epub 2010 Feb 9.
The intricate phase diagram of the binuclear iron(II) spin-crossover complex [{Fe(3-bpp)(NCS)(2)}(2)(4,4'-bypiridine)].2CH(3)OH where 3-bpp is 2,6-bis(pyrazol-3-yl)pyridine has been investigated by variable temperature single crystal X-ray diffraction including a study into the effect of photo-irradiation. This sample is known to exhibit an incomplete spin transition at low temperature. At room temperature, in phase I, iron ions are all crystallographically equivalent, adopting the high spin state (HS). X-Ray structural investigation has revealed two phase transitions in the range (300-30 K). The first transition (T approximately 161 K) leading to phase II is of a purely structural nature and corresponds to a break in symmetry as a result of a twist of the two rings of 4,4'-bipyridine; the two iron sites of the binuclear unit becoming crystallographically independent but remaining all HS. The second structural transition corresponds to the spin crossover, one of the two Fe(II) ions of the binuclear complex being in the low spin state (LS) in phase III. The crystal structure shows an ordered HS-LS crystal packing where HS and LS sites are clearly identified and not randomly distributed in the metal ion sites as often observed. Moreover, light irradiation of single crystals in phase III at 30 K, leading to phase III*, induces a light-induced spin-state trapping (LIESST) effect corresponding to the full conversion of all the iron sites to HS. The crystal packing in phase III* is closer to that of phase III than to those observed in the other HS phases, I and II. This reveals an unusual differentiation between the thermal and light-induced HS states. A deeper analysis of the structural properties first demonstrates the key role of the bipyridine bridge in the peculiar preliminary pure structural transition shown by the title compound. Elsewhere, it also shows that the molecular packing is strongly dependent on the nature of the external perturbation contrary to the iron coordination sphere geometry that appears to be only dependent on the spin state. Moreover, in the HS phase II, the distortion of the iron sites that will subsequently undergo a spin crossover demonstrates some differences with the distortion of the iron sites that remain HS. The predominant role of the iron environment distortion in the spin crossover phenomenon is thus clearly evidenced.
双核铁(II)自旋交叉配合物[{Fe(3-bpp)(NCS)(2)}(2)(4,4'-bypiridine)]。2CH(3)OH 的复杂相图已经通过变温单晶 X 射线衍射进行了研究,包括对光辐照影响的研究。该样品在低温下表现出不完全的自旋转变。在室温下,在相 I 中,铁离子在晶体学上都是等效的,采用高自旋态(HS)。X 射线结构研究表明,在(300-30 K)范围内存在两个相变。第一个相变(T 约为 161 K)导致相 II 的发生是纯粹的结构性质,并且对应于由于两个 4,4'-联吡啶环的扭曲而导致的对称性的破坏;双核单元的两个铁位点在晶体学上变得独立,但仍保持全部 HS。第二个结构转变对应于自旋交叉,双核配合物中的两个 Fe(II)离子之一在相 III 中处于低自旋态(LS)。晶体结构显示出有序的 HS-LS 晶体堆积,其中 HS 和 LS 位在金属离子位中清楚地识别出来,而不是像通常观察到的那样随机分布。此外,在 30 K 下对相 III 中的单晶进行光辐照,导致相 III的产生,诱导光致自旋态捕获(LIESST)效应,对应于所有铁位完全转化为 HS。相 III的晶体堆积更接近相 III,而不是其他 HS 相 I 和 II。这揭示了热诱导和光诱导 HS 态之间的异常区别。对结构性质的更深入分析首先证明了联吡啶桥在标题化合物所示的特殊初步纯结构转变中起着关键作用。在其他地方,它还表明分子堆积强烈依赖于外部扰动的性质,而不是铁配位球几何形状,后者似乎仅取决于自旋态。此外,在 HS 相 II 中,随后经历自旋交叉的铁位点的扭曲显示出与保持 HS 的铁位点的扭曲的一些差异。因此,铁环境扭曲在自旋交叉现象中的主导作用得到了明显的证明。