Jornet-Mollá Verónica, Giménez-Saiz Carlos, Cañadillas-Delgado Laura, Yufit Dmitry S, Howard Judith A K, Romero Francisco M
Instituto de Ciencia Molecular, Universitat de València P. O. Box 22085 46071 València Spain
Institut Laue-Langevin 6 Rue Jules Horowitz, BP 156 38042 Grenoble Cedex 9 France.
Chem Sci. 2020 Nov 16;12(3):1038-1053. doi: 10.1039/d0sc04918b.
The iron(ii) salt Fe(bpp)·HisonicNO·5HO () (bpp = 2,6-bis(pyrazol-3-yl)pyridine; isonicNO = isonicotinate N-oxide anion) undergoes a partial spin crossover (SCO) with symmetry breaking at = 167 K to a mixed-spin phase (50% high-spin (HS), 50% low-spin (LS)) that is metastable below = 116 K. Annealing the compound at lower temperatures results in a 100% LS phase that differs from the initial HS phase in the formation of a hydrogen bond (HB) between two water molecules (O4W and O5W) of crystallisation. Neutron crystallography experiments have also evidenced a proton displacement inside a short strong hydrogen bond (SSHB) between two isonicNO anions. Both phenomena can also be detected in the mixed-spin phase. undergoes a light-induced excited-state spin trapping (LIESST) of the 100% HS phase, with breaking of the O4W⋯O5W HB and the onset of proton static disorder in the SSHB, indicating the presence of a light-induced activation energy barrier for proton motion. This excited state shows a stepped relaxation at (LIESST) = 68 K and (LIESST) = 76 K. Photocrystallography measurements after the first relaxation step reveal a single Fe site with an intermediate geometry, resulting from the random distribution of the HS and LS sites throughout the lattice.
铁(II)盐Fe(bpp)·异烟酸N-氧化物·5H₂O()(bpp = 2,6-双(吡唑-3-基)吡啶;异烟酸N-氧化物 = 异烟酸N-氧化物阴离子)在167 K时发生部分自旋交叉(SCO),对称性破缺至混合自旋相(50%高自旋(HS),50%低自旋(LS)),该相在116 K以下是亚稳态。在较低温度下对该化合物进行退火处理会得到100%的低自旋相,其与初始高自旋相的不同之处在于,结晶的两个水分子(O4W和O5W)之间形成了氢键(HB)。中子晶体学实验也证明了两个异烟酸N-氧化物阴离子之间的短强氢键(SSHB)内存在质子位移。这两种现象在混合自旋相中也能被检测到。100%高自旋相发生光诱导激发态自旋捕获(LIESST),伴随着O4W⋯O5W氢键的断裂以及SSHB中质子静态无序的开始,表明存在质子运动的光诱导活化能垒。该激发态在68 K和76 K时呈现出阶梯式弛豫。第一次弛豫步骤后的光晶体学测量揭示了一个具有中间几何结构的单一铁位点,这是由于高自旋和低自旋位点在整个晶格中的随机分布所致。