Suppr超能文献

优化靶向蛋白质组学中快速分析方法建立的 MRM 实验的从头设计。

Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics.

机构信息

Center for Bioinformatics, Eberhard-Karls-Universität Tubingen, Germany.

出版信息

J Proteome Res. 2010 May 7;9(5):2696-704. doi: 10.1021/pr1001803.

Abstract

Targeted proteomic approaches such as multiple reaction monitoring (MRM) overcome problems associated with classical shotgun mass spectrometry experiments. Developing MRM quantitation assays can be time consuming, because relevant peptide representatives of the proteins must be found and their retention time and the product ions must be determined. Given the transitions, hundreds to thousands of them can be scheduled into one experiment run. However, it is difficult to select which of the transitions should be included into a measurement. We present a novel algorithm that allows the construction of MRM assays from the sequence of the targeted proteins alone. This enables the rapid development of targeted MRM experiments without large libraries of transitions or peptide spectra. The approach relies on combinatorial optimization in combination with machine learning techniques to predict proteotypicity, retention time, and fragmentation of peptides. The resulting potential transitions are scheduled optimally by solving an integer linear program. We demonstrate that fully automated construction of MRM experiments from protein sequences alone is possible and over 80% coverage of the targeted proteins can be achieved without further optimization of the assay.

摘要

靶向蛋白质组学方法,如多重反应监测(MRM),克服了经典的 shotgun 质谱实验相关的问题。开发 MRM 定量分析方法可能很耗时,因为必须找到目标蛋白的相关肽代表,并确定它们的保留时间和产物离子。给定这些转换,可能会有数百到数千个转换被安排在一个实验运行中。然而,很难选择应该将哪些转换纳入测量。我们提出了一种新的算法,可以仅从目标蛋白的序列构建 MRM 分析。这使得无需大量的转换或肽谱库就可以快速开发靶向 MRM 实验。该方法依赖于组合优化与机器学习技术相结合,以预测肽的亲肽性、保留时间和片段化。通过求解整数线性规划,最优地调度得到的潜在转换。我们证明了仅从蛋白质序列自动构建 MRM 实验是可行的,并且无需进一步优化分析,就可以实现目标蛋白的 80%以上的覆盖率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验