Département de Mathématiques et de Statistique, Université Laval, Sainte-Foy, QC, Canada G1V 0A6.
J Anim Ecol. 2010 May;79(3):548-55. doi: 10.1111/j.1365-2656.2010.01670.x. Epub 2010 Feb 25.
资源选择函数(RSFs)正成为栖息地选择研究中的主要工具。RSF 系数可以通过无条件(标准)和条件逻辑回归来估计。虽然混合效应模型在标准逻辑回归中具有优势,但在生态研究中,混合条件逻辑回归仍然在很大程度上被忽视。
我们展示了混合条件逻辑回归在栖息地选择研究中的重要性。首先,我们使用空间显式模型来说明混合效应 RSF 在存在个体间选择异质性且违反无关替代假设(IIA)时如何有用。IIA 假设指出,对栖息地类型 A 的偏好强度不取决于其他也可获得的栖息地类型。其次,我们展示了混合效应模型对评估野牛野牛自由放养栖息地选择的重要性。
当个体之间的运动规则是同质的且 IIA 假设得到尊重时,固定效应 RSF 可以充分描述模拟动物的栖息地选择。然而,在违反个体同质性和 IIA 假设的情况下,RSF 最好用混合效应回归来估计,而固定效应模型甚至可能得出错误的结论。
混合效应模型表明,野牛并没有选择农田,而是在对农田的反应方面表现出强烈的个体间差异。不到一半的野牛更喜欢农田而不是森林。相反,固定效应模型简单地表明了对农田的总体选择。
条件逻辑回归被认为是评估资源可用性变化时栖息地选择的强大方法。这种回归在生态研究中越来越多地被使用,但几乎仅在固定效应模型的背景下使用。适应度最大化可能意味着个体之间的权衡差异,这可能导致选择中的个体间差异,并导致违反 IIA。这些情况最好用混合效应模型来建模。混合效应条件逻辑回归应该成为生态研究的有价值工具。