Suppr超能文献

用于识别新的前 miRNA 的描述局部连续结构-序列信息的新语法。

New syntax to describe local continuous structure-sequence information for recognizing new pre-miRNAs.

机构信息

Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

J Theor Biol. 2010 May 21;264(2):578-84. doi: 10.1016/j.jtbi.2010.02.037. Epub 2010 Mar 2.

Abstract

As an important complement to experimental identification of pre-miRNA, computational prediction methods are attracting more and more attention. Features extracted from pre-miRNA are the key to computational prediction. Among the features, local continuous structure-sequence information is usually employed by existing computational methods. As more and more species-specific miRNAs have been identified, a new syntax is required to describe pre-miRNA local continuous structure-sequence features. Therefore, we proposed here the use of couplet syntax to describe pre-miRNA intrinsic features. When tested on a dataset from miRBase12.0 with the use of features extracted by couplet syntax, the SVM classifier achieves a sensitivity of 81.98% and specificity of 87.16% on a human test set and a sensitivity of 86.71% on all other species. The obtained results indicate that the proposed couplet syntax can describe the intrinsic features of pre-miRNA better than traditional methods. By means of describing pre-miRNA secondary structure more precisely and masking frequently mutated nucleotides, couplet syntax provides a powerful feature-describing method that can be applied to many computational prediction methods.

摘要

作为实验鉴定前体 miRNA 的重要补充,计算预测方法越来越受到关注。从前体 miRNA 中提取的特征是计算预测的关键。在这些特征中,局部连续结构-序列信息通常被现有计算方法所采用。随着越来越多的物种特异性 miRNA 被鉴定出来,需要一种新的语法来描述前体 miRNA 的局部连续结构-序列特征。因此,我们在这里提出使用对联语法来描述前体 miRNA 的内在特征。在用对联语法提取的特征对 miRBase12.0 数据集进行测试时,SVM 分类器在人类测试集上的灵敏度为 81.98%,特异性为 87.16%,在所有其他物种上的灵敏度为 86.71%。结果表明,所提出的对联语法比传统方法能够更好地描述前体 miRNA 的内在特征。通过更精确地描述前体 miRNA 的二级结构和屏蔽经常突变的核苷酸,对联语法提供了一种强大的特征描述方法,可应用于许多计算预测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验