Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK.
J Exp Bot. 2010 Mar;61(5):1293-309. doi: 10.1093/jxb/erq019. Epub 2010 Mar 4.
The likely future increase in atmospheric CO(2) and associated changes in climate will affect global patterns of plant production. Models integrate understanding of the influence of the environment on plant physiological processes and so enable estimates of future changes to be made. Moreover, they allow us to assess the consequences of different assumptions for predictions and so stimulate further research. This paper is a review of the sensitivities of one such model, Hybrid6.5, a detailed mechanistic model of terrestrial primary production. This model is typical of its type, and the sensitivities of the global distribution of predicted production to model assumptions and possible future CO(2) levels and climate are assessed. Sensitivity tests show that leaf phenology has large effects on mean C(3) crop and needleleaved cold deciduous tree production, reducing potential net primary production (NPP) from that obtained using constant maximum annual leaf area index by 32.9% and 41.6%, respectively. Generalized Plant Type (GPT) specific parameterizations, particularly photosynthetic capacity per unit leaf N, affect mean predicted NPP of higher C(3) plants by -22.3% to 27.9%, depending on the GPT, compared to NPP predictions obtained using mean parameter values. An increase in atmospheric CO(2) concentrations from current values to 720 ppm by the end of this century, with associated effects on climate from a typical climate model, is predicted to increase global NPP by 37.3%. Mean increases range from 43.9-52.9% across different C(3) GPTs, whereas the mean NPP of C(4) grass and crop increases by 5.9%. Significant uncertainties concern the extent to which acclimative processes may reduce any potential future increase in primary production and the degree to which any gains are transferred to durable, and especially edible, biomass. Experimentalists and modellers need to work closely together to reduce these uncertainties. A number of research priorities are suggested. 'The green leaf or, to be more precise, the microscopic green grain of chlorophyll, is the focus, the point in the world to which solar energy flows on one side while all the manifestations of life on earth take their source on the other side.' Kliment Arkadievich Timiryazev The conclusions of a century of plant physiology, speech at Moscow University, 12 January 1901.
大气中 CO(2)含量的未来可能增加以及由此引起的气候变化将影响全球植物生产力格局。模型综合了环境对植物生理过程的影响,从而可以对未来的变化进行估计。此外,它们还可以让我们评估不同假设对预测的影响,从而激发进一步的研究。本文综述了一个这样的模型——Hybrid6.5 的敏感性,这是一个陆地初级生产力的详细机制模型。该模型是其类型的典型代表,评估了模型假设和可能的未来 CO(2)水平及气候对预测生产力的全球分布的影响。敏感性测试表明,叶片物候对 C(3)作物和针叶落叶冷生树木的平均生产力有很大影响,分别使潜在的净初级生产力(NPP)减少了 32.9%和 41.6%,而使用恒定的最大年叶片面积指数来计算。广义植物类型(GPT)特定的参数化,特别是单位叶片氮的光合能力,与使用平均参数值预测的 NPP 相比,会使较高 C(3)植物的平均预测 NPP 降低-22.3%至 27.9%,具体取决于 GPT。预计到本世纪末,大气中 CO(2)浓度将从目前的水平增加到 720ppm,同时典型气候模型对气候的影响将使全球 NPP 增加 37.3%。不同 C(3)GPT 的平均增长率范围为 43.9-52.9%,而 C(4)草和作物的 NPP 平均增长率为 5.9%。存在很大的不确定性,即适应过程可能在多大程度上减少未来初级生产力的任何潜在增长,以及任何收益在多大程度上转移到耐用的、特别是可食用的生物量上。实验家和建模者需要密切合作,以减少这些不确定性。本文提出了一些研究重点。“绿叶,或者更准确地说,是叶绿素的微观绿色颗粒,是焦点,是太阳能在一边流动,而地球上所有生命的表现都在另一边产生的地方。”克里门特·阿法纳西耶维奇·季米里亚捷夫 1901 年 1 月 12 日在莫斯科大学的演讲,总结了一个世纪的植物生理学。