College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK.
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK.
New Phytol. 2018 Jun;218(4):1462-1477. doi: 10.1111/nph.15100. Epub 2018 Apr 10.
Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO .
植物的温度响应在地理上存在差异,反映了热环境截然不同的生境和物种对其起源气候的长期适应。植物还可以适应温度的快速时间变化,以减轻压力。尽管已知植物光合作用对温度有适应能力,但许多用于预测未来植被和气候-碳相互作用的全球模型并不包括这一过程。我们在一个耦合的气候-碳循环模型中量化了生物地理变异性和光合作用温度响应的热驯化对 1860 年至 2100 年陆地碳(C)循环的全球和区域影响,该模型模拟了 22 个全球气候模型。结果表明,在光合作用温度响应中纳入生物地理变异性对当前和未来的 C 吸收最为重要,随着未来变暖,热驯化的重要性增加。同时考虑这两个因素,缩小了在气候预测下 2100 年全球陆地 C 储存模拟预测范围(全球分别为 29%和 43%,热带地区分别为 29%和 43%)。与早期研究相反,我们的结果表明,光合作用能力的热驯化使热带和温带 C 对变暖的敏感性降低,但在高 CO2 下,北温带地区的变暖诱导的 C 吸收减少。