Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea.
Plant Cell Physiol. 2010 Apr;51(4):596-609. doi: 10.1093/pcp/pcq025. Epub 2010 Mar 4.
Plant phytochromes, molecular light switches that regulate various aspects of plant growth and development, are phosphoproteins that are also known to be autophosphorylating serine/threonine kinases. Although a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified, no protein kinase that acts on phytochromes has been reported thus far, and the exact site of phytochrome autophosphorylation has not been identified. In this study, we investigated the functional role of phytochrome autophosphorylation. We first mapped precisely the autophosphorylation sites of oat phytochrome A (phyA), and identified Ser8 and Ser18 in the 65 amino acid N-terminal extension (NTE) region as being the autophosphorylation sites. The in vivo functional roles of phytochrome autophosphorylation were examined by introducing autophosphorylation site mutants into phyA-deficient Arabidopsis thaliana. We found that all the transgenic plants expressing the autophosphorylation site mutants exhibited hypersensitive light responses, indicating an increase in phyA activity. Further analysis showed that these phyA mutant proteins were degraded at a significantly slower rate than wild-type phyA under light conditions, which suggests that the increased phyA activity of the mutants is related to their increased protein stability. In addition, protoplast transfection analyses with green fluorescent protein (GFP)-fused phyA constructs showed that the autophosphorylation site mutants formed sequestered areas of phytochrome (SAPs) in the cytosol much more slowly than did wild-type phyA. These results suggest that the autophosphorylation of phyA plays an important role in the regulation of plant phytochrome signaling through the control of phyA protein stability.
植物光敏色素是调节植物生长和发育各个方面的分子光开关,是磷酸化蛋白,也被认为是自身磷酸化丝氨酸/苏氨酸激酶。虽然已经鉴定出几种与光敏色素直接相互作用并去磷酸化光敏色素的蛋白磷酸酶,但迄今为止尚未报道作用于光敏色素的蛋白激酶,并且光敏色素自身磷酸化的确切位点尚未确定。在这项研究中,我们研究了光敏色素自身磷酸化的功能作用。我们首先精确地绘制了燕麦光敏色素 A(phyA)的自身磷酸化位点图,并确定了 65 个氨基酸 N 端延伸(NTE)区域中的 Ser8 和 Ser18 是自身磷酸化位点。通过将自身磷酸化位点突变体引入phyA 缺陷型拟南芥中,研究了光敏色素自身磷酸化的体内功能作用。我们发现,表达自身磷酸化位点突变体的所有转基因植物均表现出对光的超敏感反应,表明 phyA 活性增加。进一步的分析表明,与野生型 phyA 相比,这些 phyA 突变蛋白在光照条件下的降解速度明显较慢,这表明突变体中 phyA 活性的增加与其蛋白稳定性的增加有关。此外,用绿色荧光蛋白(GFP)融合的 phyA 构建体进行的原生质体转染分析表明,自身磷酸化位点突变体在细胞质中形成光敏色素隔离区(SAPs)的速度比野生型 phyA 慢得多。这些结果表明,phyA 的自身磷酸化通过控制 phyA 蛋白稳定性在植物光敏色素信号转导的调节中起着重要作用。