Suppr超能文献

植物光受体信号网络。

Phytochrome Signaling Networks.

机构信息

Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA; email:

出版信息

Annu Rev Plant Biol. 2021 Jun 17;72:217-244. doi: 10.1146/annurev-arplant-080620-024221. Epub 2021 Mar 23.

Abstract

The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.

摘要

光信号被植物光受体家族中的光敏色素感知,这对植物生命周期中几乎所有生长和发育方面都有至关重要的影响。光敏色素协调的整体调控网络,包括构象转换、亚细胞定位、直接的蛋白质-蛋白质相互作用、转录和转录后调控以及翻译和翻译后调控,以促进光形态建成,在多个层次上高度协调和调控。在过去的十年中,创新方法的进展极大地拓宽了我们对光敏色素介导的光信号通路复杂机制的理解。这篇综述讨论并总结了光敏色素的模块化结构、光敏色素相互作用蛋白及其功能的作用;正向和负向调节剂在光敏色素信号中的相互调节;光敏色素在转录活性、选择性剪接和翻译调控中的调控作用;以及激酶和 E3 连接酶调节 PHYTOCHROME INTERACTING FACTORs 以优化光形态建成的作用。

相似文献

1
Phytochrome Signaling Networks.
Annu Rev Plant Biol. 2021 Jun 17;72:217-244. doi: 10.1146/annurev-arplant-080620-024221. Epub 2021 Mar 23.
2
Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways.
Trends Plant Sci. 2015 Oct;20(10):641-650. doi: 10.1016/j.tplants.2015.06.010.
3
COP1 regulates plant growth and development in response to light at the post-translational level.
J Exp Bot. 2017 Oct 13;68(17):4737-4748. doi: 10.1093/jxb/erx312.
5
SUMOylation of different targets fine-tunes phytochrome signaling.
New Phytol. 2021 Nov;232(3):1201-1211. doi: 10.1111/nph.17634.
7
Regulation of Photomorphogenic Development by Plant Phytochromes.
Int J Mol Sci. 2019 Dec 6;20(24):6165. doi: 10.3390/ijms20246165.
8
Convergent regulation of PIFs and the E3 ligase COP1/SPA1 mediates thermosensory hypocotyl elongation by plant phytochromes.
Curr Opin Plant Biol. 2018 Oct;45(Pt A):188-203. doi: 10.1016/j.pbi.2018.09.006. Epub 2018 Sep 29.
9
Light-regulated pre-mRNA splicing in plants.
Curr Opin Plant Biol. 2021 Oct;63:102037. doi: 10.1016/j.pbi.2021.102037. Epub 2021 Apr 3.
10
Regulation of Plant Photoresponses by Protein Kinase Activity of Phytochrome A.
Int J Mol Sci. 2023 Jan 20;24(3):2110. doi: 10.3390/ijms24032110.

引用本文的文献

2
Optogenetic control of transgene expression in .
Appl Plant Sci. 2025 Jan 28;13(4):e11632. doi: 10.1002/aps3.11632. eCollection 2025 Jul-Aug.
8
The BBX family and their response to abiotic stress in ginger (Zingiber officinale Roscoe).
BMC Genomics. 2025 May 30;26(1):548. doi: 10.1186/s12864-025-11461-9.
9
Complex Signaling Networks Underlying Blue-Light-Mediated Floral Transition in Plants.
Plants (Basel). 2025 May 20;14(10):1533. doi: 10.3390/plants14101533.

本文引用的文献

1
FHY1 and FHY1-LIKE Are Not Required for Phytochrome A Signal Transduction in the Nucleus.
Plant Commun. 2019 Nov 9;1(2):100007. doi: 10.1016/j.xplc.2019.100007. eCollection 2020 Mar 9.
2
The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution.
Plant Commun. 2020 Apr 12;1(3):100044. doi: 10.1016/j.xplc.2020.100044. eCollection 2020 May 11.
3
SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in .
Development. 2020 Oct 8;147(19):dev189233. doi: 10.1242/dev.189233.
4
Allosteric deactivation of PIFs and EIN3 by microproteins in light control of plant development.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18858-18868. doi: 10.1073/pnas.2002313117. Epub 2020 Jul 21.
5
Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of expression in .
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18840-18848. doi: 10.1073/pnas.2005871117. Epub 2020 Jul 20.
6
Identification of BBX proteins as rate-limiting cofactors of HY5.
Nat Plants. 2020 Aug;6(8):921-928. doi: 10.1038/s41477-020-0725-0. Epub 2020 Jul 13.
7
A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis.
Plant J. 2020 Sep;104(1):113-123. doi: 10.1111/tpj.14908. Epub 2020 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验