Department of Entomology, Ohio State University, Columbus, OH, United States.
J Insect Physiol. 2010 Oct;56(10):1366-76. doi: 10.1016/j.jinsphys.2010.02.014. Epub 2010 Mar 11.
In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state.
在这篇综述中,我们描述了吸血节肢动物的水平衡需求,特别是对比了非吸血、离宿主状态下的脱水耐受性和伴随吸血而来的水分过多的挑战。在离宿主阶段的大多数基本水平衡特征也适用于其他陆地节肢动物。一系列协调良好的反应使节肢动物能够节约水资源,提高其干燥耐受性,并通过采用多种分子、结构和行为反应来增加其水供应。离宿主阶段的水分流失率特别有助于制定一种根据其对水的栖息地要求对媒介进行分类的方案,从而提供了一种方便的工具,具有潜在的预测能力,可用于定义当前和未来适宜的媒介栖息地。吸血引发了完全不同的一系列挑战,因为当载体通过快速增加其表皮水分流失率和提高利尿率来排出多余的水分并浓缩血餐时,载体会对此做出反应。以血液为食的幼虫在一个吸血周期结束时通常会增加水分含量,但在成虫中,当周期完成时,水分含量会恢复到喂食前的水平。以血液为食的各种节肢动物中存在明显的共同主题,特别是用于应对突然涌入的水分的生理机制,以及用于应对非吸血、离宿主状态下遇到的水分短缺的机制。