Institut National de la Santé et de la Recherche Médicale Unité, Faculté de Médecine Paris-Sud, rue Gabriel Péri, Le Kremlin-Bicêtre Cedex France.
Endocrinology. 2010 May;151(5):2244-54. doi: 10.1210/en.2009-0753. Epub 2010 Mar 5.
Mineralocorticoid receptor (MR) plays a critical role in brain function. However, the regulatory mechanisms controlling neuronal MR expression that constitutes a key element of the hormonal response are currently unknown. Two alternative P1 and P2 promoters drive human MR gene transcription. To examine promoter activities and their regulation during neuronal differentiation and in mature neurons, we generated stably transfected recombinant murine embryonic stem cell (ES) lines, namely P1-GFP and P2-GFP, in which each promoter drove the expression of the reporter gene green fluorescent protein (GFP). An optimized protocol, using embryoid bodies and retinoic acid, permitted us to obtain a reproducible neuronal differentiation as revealed by the decrease in phosphatase alkaline activity, the concomitant appearance of morphological changes (neurites), and the increase in the expression of neuronal markers (nestin, beta-tubulin III, and microtubule-associated protein-2) as demonstrated by immunocytochemistry and quantitative PCR. Using these cell-based models, we showed that MR expression increased by 5-fold during neuronal differentiation, MR being preferentially if not exclusively expressed in mature neurons. Although the P2 promoter was always weaker than the P1 promoter during neuronal differentiation, their activities increased by 7- and 5-fold, respectively, and correlated with MR expression. Finally, although progesterone and dexamethasone were ineffective, aldosterone stimulated both P1 and P2 activity and MR expression, an effect that was abrogated by knockdown of MR by small interfering RNA. In conclusion, we provide evidence for a tight transcriptional control of MR expression during neuronal differentiation. Given the neuroprotective and antiapoptotic role proposed for MR, the neuronal differentiation of ES cell lines opens potential therapeutic perspectives in neurological and psychiatric diseases.
盐皮质激素受体 (MR) 在大脑功能中起着关键作用。然而,目前尚不清楚控制神经元 MR 表达的调节机制,而神经元 MR 表达是激素反应的关键组成部分。两种替代的 P1 和 P2 启动子驱动人类 MR 基因转录。为了研究启动子活性及其在神经元分化和成熟神经元中的调节,我们生成了稳定转染的重组鼠胚胎干细胞 (ES) 系,即 P1-GFP 和 P2-GFP,其中每个启动子驱动报告基因绿色荧光蛋白 (GFP) 的表达。通过优化方案,使用类胚体和视黄酸,我们能够获得可重复的神经元分化,如碱性磷酸酶活性降低、形态变化(神经元突起)同时出现以及神经元标志物(巢蛋白、β-微管蛋白 III 和微管相关蛋白-2)的表达增加,通过免疫细胞化学和定量 PCR 证实。使用这些基于细胞的模型,我们表明 MR 表达在神经元分化过程中增加了 5 倍,MR 主要但不是唯一在成熟神经元中表达。尽管 P2 启动子在神经元分化过程中始终弱于 P1 启动子,但它们的活性分别增加了 7 倍和 5 倍,与 MR 表达相关。最后,尽管孕酮和地塞米松无效,但醛固酮刺激 P1 和 P2 的活性和 MR 表达,而通过小干扰 RNA 敲低 MR 则消除了这种作用。总之,我们提供了证据表明在神经元分化过程中 MR 表达受到严格的转录控制。鉴于 MR 提出的神经保护和抗凋亡作用,ES 细胞系的神经元分化为神经和精神疾病提供了潜在的治疗前景。