INSERM U693, Faculté de Médecine Paris-Sud, 63, rue Gabriel Péri, 94276 Le Kremlin Bicêtre Cedex, France.
Cardiovasc Res. 2010 Aug 1;87(3):467-75. doi: 10.1093/cvr/cvq087. Epub 2010 Mar 17.
Cardiac mineralocorticoid receptor (MR) activation triggers adverse cardiovascular events that could be efficiently prevented by mineralocorticoid antagonists. To gain insights into the pathophysiological role of MR function, we established embryonic stem (ES) cell lines from blastocysts of transgenic mice overexpressing the human MR driven by its proximal P1 or distal P2 promoter and presenting with cardiomyopathy, tachycardia, and arrhythmia. Cardiomyocyte differentiation allowed us to investigate the molecular mechanisms contributing to MR-mediated cardiac dysfunction.
During cardiac differentiation, wild-type (WT) and recombinant ES cell cultures and excised beating patches expressed endogenous MR along with cardiac gene markers. The two-fold increase in MR protein detected in P1.hMR and P2.hMR cardiomyocytes led to a parallel increase in the spontaneous beating frequency of hMR-overexpressing cardiomyocytes compared with WT. The MR-mediated chronotropic effect was ligand-independent, could be partially repressed by spironolactone, and was accompanied by a significant two- to four-fold increase in mRNA and protein levels of the pacemaker channel HCN1, generating depolarizing If currents, thus revealing a potential new MR target. This was associated with modification in the expression of HCN4, the inward-rectifier potassium channel Kir2.1, and the L-type voltage-dependent calcium channel Cav1.2.
We demonstrate that the amplification of MR signalling in ES-derived cardiomyocytes has a major impact on cardiomyocyte contractile properties through an important remodelling of ion channel expression, contributing to arrhythmias. Our results highlight the prominent role of MR function in cardiac physiology and support the benefit of MR antagonists in the management of cardiac dysfunctions.
心脏盐皮质激素受体(MR)的激活会引发不良心血管事件,而盐皮质激素拮抗剂可有效预防这些事件。为了深入了解 MR 功能的病理生理作用,我们从过表达人 MR 的转基因小鼠的囊胚中建立了胚胎干细胞(ES)系,该 MR 由其近端 P1 或远端 P2 启动子驱动,表现为心肌病、心动过速和心律失常。心肌细胞分化使我们能够研究导致 MR 介导的心脏功能障碍的分子机制。
在心脏分化过程中,野生型(WT)和重组 ES 细胞培养物和切取的搏动斑块表达内源性 MR 以及心脏基因标志物。在 P1.hMR 和 P2.hMR 心肌细胞中检测到的 MR 蛋白增加了两倍,导致 hMR 过表达心肌细胞的自发搏动频率与 WT 相比增加了一倍。MR 介导的变时作用是配体非依赖性的,可被螺内酯部分抑制,并伴有起搏通道 HCN1 的 mRNA 和蛋白水平显著增加 2 至 4 倍,产生去极化 If 电流,从而揭示了一个潜在的新的 MR 靶标。这与 HCN4、内向整流钾通道 Kir2.1 和 L 型电压依赖性钙通道 Cav1.2 的表达修饰有关。
我们证明了 ES 衍生的心肌细胞中 MR 信号的放大对心肌细胞收缩特性有重大影响,这是通过离子通道表达的重要重塑来实现的,从而导致心律失常。我们的结果强调了 MR 功能在心脏生理学中的重要作用,并支持 MR 拮抗剂在心脏功能障碍管理中的益处。