Suppr超能文献

适应无菌小鼠胃肠道后筛选出的清酒乳杆菌突变体的分析。

Analysis of Lactobacillus sakei mutants selected after adaptation to the gastrointestinal tracts of axenic mice.

机构信息

Unité Flore Lactique et Environnement Carné, UR309, INRA, Domaine de Vilvert, Jouy en Josas, France.

出版信息

Appl Environ Microbiol. 2010 May;76(9):2932-9. doi: 10.1128/AEM.02451-09. Epub 2010 Mar 5.

Abstract

We recently showed that Lactobacillus sakei, a natural meat-borne lactic acid bacterium, can colonize the gastrointestinal tracts (GIT) of axenic mice but that this colonization in the intestinal environment selects L. sakei mutants showing modified colony morphology (small and rough) and cell shape, most probably resulting from the accumulation of various mutations that confer a selective advantage for persistence in the GIT. In the present study, we analyzed such clones, issued from three different L. sakei strains, in order to determine which functions were modified in the mutants. In the elongated filamentous cells of the rough clones, transmission electron microscopy (TEM) analysis showed a septation defect and dotted and slanted black bands, suggesting the presence of a helical structure around the cells. Comparison of the cytoplasmic and cell wall/membrane proteomes of the meat isolate L. sakei 23K and of one of its rough derivatives revealed a modified expression for 38 spots. The expression of six oxidoreductases, several stress proteins, and four ABC transporters was strongly reduced in the GIT-adapted strain, while the actin-like MreB protein responsible for cell shaping was upregulated. In addition, the expression of several enzymes involved in carbohydrate metabolism was modified, which may correlate with the observation of modified growth of mutants on various carbon sources. These results suggest that the modifications leading to a better adaptation to the GIT are pleiotropic and are characterized in a rough mutant by a different stress status, a cell wall modification, and modified use of energy sources, leading to an improved fitness for the colonization of the GIT.

摘要

我们最近表明,天然存在于肉类中的乳酸菌片球菌可以在无菌小鼠的胃肠道(GIT)中定植,但这种在肠道环境中的定植会选择出具有改良菌落形态(小而粗糙)和细胞形状的片球菌突变体,这很可能是由于积累了各种赋予在 GIT 中持续存在选择性优势的突变所致。在本研究中,我们分析了来自三个不同片球菌菌株的此类克隆,以确定突变体中哪些功能发生了改变。在粗糙克隆的伸长丝状细胞中,透射电子显微镜(TEM)分析显示出隔膜缺陷和点状和倾斜的黑色带,表明细胞周围存在螺旋结构。比较肉源分离株片球菌 23K 和其粗糙衍生物之一的细胞质和细胞壁/膜蛋白质组,发现 38 个斑点的表达发生了改变。在适应 GIT 的菌株中,六种氧化还原酶、几种应激蛋白和四个 ABC 转运蛋白的表达强烈降低,而负责细胞成形的肌动蛋白样 MreB 蛋白上调。此外,参与碳水化合物代谢的几种酶的表达也发生了改变,这可能与观察到突变体在各种碳源上生长的改变有关。这些结果表明,导致更好地适应 GIT 的修饰是多效的,在粗糙突变体中表现为不同的应激状态、细胞壁修饰和能量来源的改变利用,从而提高了对 GIT 定植的适应性。

相似文献

1
Analysis of Lactobacillus sakei mutants selected after adaptation to the gastrointestinal tracts of axenic mice.
Appl Environ Microbiol. 2010 May;76(9):2932-9. doi: 10.1128/AEM.02451-09. Epub 2010 Mar 5.
4
Adaptive response of Lactobacillus sakei 23K during growth in the presence of meat extracts: a proteomic approach.
Int J Food Microbiol. 2010 Aug 15;142(1-2):36-43. doi: 10.1016/j.ijfoodmicro.2010.05.014. Epub 2010 May 24.
5
Comparative genomics of Lactobacillus sakei with emphasis on strains from meat.
Mol Genet Genomics. 2011 Apr;285(4):297-311. doi: 10.1007/s00438-011-0608-1. Epub 2011 Mar 3.
6
Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth.
Appl Environ Microbiol. 2007 Apr;73(8):2522-31. doi: 10.1128/AEM.02396-06. Epub 2007 Feb 16.
7
Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl.
Appl Environ Microbiol. 2004 Dec;70(12):7260-8. doi: 10.1128/AEM.70.12.7260-7268.2004.
8
The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K.
Nat Biotechnol. 2005 Dec;23(12):1527-33. doi: 10.1038/nbt1160. Epub 2005 Nov 6.
9
Global transcriptome response in Lactobacillus sakei during growth on ribose.
BMC Microbiol. 2011 Jun 24;11:145. doi: 10.1186/1471-2180-11-145.

引用本文的文献

1
Understanding the transcriptomic response of LPG1 during Spanish-style green table olive fermentations.
Front Microbiol. 2023 Sep 22;14:1264341. doi: 10.3389/fmicb.2023.1264341. eCollection 2023.
2
Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei.
PLoS One. 2018 Jan 25;13(1):e0191053. doi: 10.1371/journal.pone.0191053. eCollection 2018.
3
Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products.
Microorganisms. 2017 Sep 6;5(3):56. doi: 10.3390/microorganisms5030056.
4
Correlation of Lactobacillus rhamnosus Genotypes and Carbohydrate Utilization Signatures Determined by Phenotype Profiling.
Appl Environ Microbiol. 2015 Aug 15;81(16):5458-70. doi: 10.1128/AEM.00851-15. Epub 2015 Jun 5.
5
Catabolic flexibility of mammalian-associated lactobacilli.
Microb Cell Fact. 2013 May 16;12:48. doi: 10.1186/1475-2859-12-48.
6
Global transcriptome response in Lactobacillus sakei during growth on ribose.
BMC Microbiol. 2011 Jun 24;11:145. doi: 10.1186/1471-2180-11-145.
7
Comparative genomics of Lactobacillus sakei with emphasis on strains from meat.
Mol Genet Genomics. 2011 Apr;285(4):297-311. doi: 10.1007/s00438-011-0608-1. Epub 2011 Mar 3.

本文引用的文献

1
Efficient transformation of Lactobacillus sake by electroporation.
Microbiology (Reading). 1996 May;142(5):1273-1279. doi: 10.1099/13500872-142-5-1273.
3
Adaptation of protein expression by Escherichia coli in the gastrointestinal tract of gnotobiotic mice.
Environ Microbiol. 2009 Apr;11(4):751-61. doi: 10.1111/j.1462-2920.2008.01798.x. Epub 2008 Oct 22.
4
Population heterogeneity of Lactobacillus plantarum WCFS1 microcolonies in response to and recovery from acid stress.
Appl Environ Microbiol. 2008 Dec;74(24):7750-8. doi: 10.1128/AEM.00982-08. Epub 2008 Oct 24.
5
Localization and expression of MreB in Vibrio parahaemolyticus under different stresses.
Appl Environ Microbiol. 2008 Nov;74(22):7016-22. doi: 10.1128/AEM.01020-08. Epub 2008 Sep 26.
6
Impact of luxS and suppressor mutations on the gastrointestinal transit of Lactobacillus rhamnosus GG.
Appl Environ Microbiol. 2008 Aug;74(15):4711-8. doi: 10.1128/AEM.00133-08. Epub 2008 Jun 6.
7
Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut.
PLoS Genet. 2008 Jan;4(1):e2. doi: 10.1371/journal.pgen.0040002. Epub 2007 Nov 27.
8
Method for reliable isolation of Lactobacillus sakei strains originating from Tunisian seafood and meat products.
Int J Food Microbiol. 2008 Feb 10;121(3):342-51. doi: 10.1016/j.ijfoodmicro.2007.11.045. Epub 2007 Nov 28.
9
Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut.
J Bacteriol. 2007 Nov;189(22):8109-19. doi: 10.1128/JB.00991-07. Epub 2007 Sep 7.
10
Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum.
Appl Environ Microbiol. 2007 Oct;73(20):6450-9. doi: 10.1128/AEM.00886-07. Epub 2007 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验