Suppr超能文献

拉曼光谱兼容的致病芽孢灭活方法。

Raman spectroscopy-compatible inactivation method for pathogenic endospores.

机构信息

Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena, Germany.

出版信息

Appl Environ Microbiol. 2010 May;76(9):2895-907. doi: 10.1128/AEM.02481-09. Epub 2010 Mar 5.

Abstract

Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed.

摘要

微拉曼光谱学是一种快速而灵敏的工具,可用于检测、分类和识别生物有机体。振动光谱本质上是每个细菌生化组成的指纹,因此可以进行物种甚至亚种级别的鉴定。因此,可以检测到易受细菌污染的区域中的微生物,例如临床环境或食品加工技术。在即时检测的范围内,也可以检测到故意释放的生物安全 3 级(BSL-3)制剂,如炭疽芽孢杆菌芽孢或其产物。然而,迄今为止,还没有针对臭名昭著的芽孢杆菌芽孢的耐拉曼光谱兼容的失活动力学方法。在这项工作中,我们提出了一种用于芽孢的失活动力学方法,一方面可以充分失活微生物,另一方面可以记录单个芽孢的拉曼光谱特征,从而可以通过高度复杂的化学计量学方法进行种特异性鉴定。评估了几种物理和化学失活方法,最终 20%甲醛处理在杀菌能力和拉曼光谱中信息保存方面优于其他方法。这一事实已通过成功使用自学习机器(如支持向量机或人工神经网络)在使用有限模型数据库范围内以足够的准确性识别灭活的炭疽芽孢杆菌相关芽孢得到了验证。

相似文献

1
Raman spectroscopy-compatible inactivation method for pathogenic endospores.
Appl Environ Microbiol. 2010 May;76(9):2895-907. doi: 10.1128/AEM.02481-09. Epub 2010 Mar 5.
2
Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches.
Anal Chem. 2012 Nov 20;84(22):9873-80. doi: 10.1021/ac302250t. Epub 2012 Nov 6.
3
Raman spectroscopic detection of anthrax endospores in powder samples.
Angew Chem Int Ed Engl. 2012 May 29;51(22):5339-42. doi: 10.1002/anie.201201266. Epub 2012 Apr 13.
4
MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores.
Anal Chem. 2008 Mar 15;80(6):2026-34. doi: 10.1021/ac701822j. Epub 2008 Feb 22.
6
Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
Appl Spectrosc. 2008 Mar;62(3):267-72. doi: 10.1366/000370208783759623.
7
Single-shot detection of bacterial endospores via coherent Raman spectroscopy.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):422-7. doi: 10.1073/pnas.0710427105. Epub 2008 Jan 9.
8
Photo-inactivation of Bacillus endospores: inter-specific variability of inactivation efficiency.
Microbiol Immunol. 2012 Oct;56(10):692-9. doi: 10.1111/j.1348-0421.2012.00493.x.
10
Raman spectroscopic study of bacterial endospores.
Anal Bioanal Chem. 2007 Dec;389(7-8):2143-51. doi: 10.1007/s00216-007-1616-1. Epub 2007 Oct 26.

引用本文的文献

1
-Cresol and : A Love-Hate Story Revealed by Raman Spectroscopy.
Anal Chem. 2025 Aug 5;97(30):16583-16592. doi: 10.1021/acs.analchem.5c02927. Epub 2025 Jul 23.
2
Boosting hypochlorite's disinfection power through pH modulation.
BMC Microbiol. 2025 Feb 28;25(1):101. doi: 10.1186/s12866-025-03831-w.
3
Lighting the Path: Raman Spectroscopy's Journey Through the Microbial Maze.
Molecules. 2024 Dec 17;29(24):5956. doi: 10.3390/molecules29245956.
4
Unveiling Microbial Diversity: Raman Spectroscopy's Discrimination of and Related Genera.
Anal Chem. 2024 Oct 1;96(39):15702-15710. doi: 10.1021/acs.analchem.4c03280. Epub 2024 Sep 18.
5
Illuminating the Tiny World: A Navigation Guide for Proper Raman Studies on Microorganisms.
Molecules. 2024 Feb 29;29(5):1077. doi: 10.3390/molecules29051077.
7
Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens.
Food Sci Biotechnol. 2023 May 1;32(12):1679-1702. doi: 10.1007/s10068-023-01312-2. eCollection 2023 Oct.
9
Mode of Action of Disinfection Chemicals on the Bacterial Spore Structure and Their Raman Spectra.
Anal Chem. 2021 Feb 16;93(6):3146-3153. doi: 10.1021/acs.analchem.0c04519. Epub 2021 Feb 1.
10
A Machine Learning-Based Raman Spectroscopic Assay for the Identification of and Related Species.
Molecules. 2019 Dec 10;24(24):4516. doi: 10.3390/molecules24244516.

本文引用的文献

4
Classification of select category A and B bacteria by Fourier transform infrared spectroscopy.
Appl Spectrosc. 2009 Jan;63(1):14-24. doi: 10.1366/000370209787169867.
5
Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
J Photochem Photobiol B. 2009 Feb 9;94(2):96-100. doi: 10.1016/j.jphotobiol.2008.10.006. Epub 2008 Oct 26.
7
Decontamination of fluid milk containing Bacillus spores using commercial household products.
J Food Prot. 2008 Mar;71(3):473-8. doi: 10.4315/0362-028x-71.3.473.
8
Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
Appl Spectrosc. 2008 Mar;62(3):267-72. doi: 10.1366/000370208783759623.
9
MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores.
Anal Chem. 2008 Mar 15;80(6):2026-34. doi: 10.1021/ac701822j. Epub 2008 Feb 22.
10
Monitoring poly(3-hydroxybutyrate) production in cupriavidus necator DSM 428 (H16) with raman spectroscopy.
Anal Chem. 2008 Mar 15;80(6):2155-60. doi: 10.1021/ac702185d. Epub 2008 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验