Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530004, China.
J Phys Chem B. 2010 Apr 1;114(12):4351-7. doi: 10.1021/jp910690z.
The electrostatic potential (ESP) is an important property of interactions within and between macromolecules, including those of importance in the life sciences. Semiempirical quantum chemical methods and classical Coulomb calculations fail to provide even qualitative ESP for many of these biomolecules. A new empirical ESP calculation method, namely, EM-ESP, is developed in this study, in which the traditional approach of point atomic charges and the classical Coulomb equation is discarded. In its place, the EM-ESP generates a three-dimensional electrostatic potential V(EM)(r) in molecular space that is the sum of contributions from all component atoms. The contribution of an atom k is formulated as a Gaussian function g(r(k);alpha(k),beta(k)) = alpha(k)/r(k)(betak) with two parameters (alpha(k) and beta(k)). The benchmark for the parameter optimization is the ESP obtained by using higher-level quantum chemical approaches (e.g., CCSD/TZVP). A set of atom-based parameters is optimized in a training set of common organic molecules. Calculated examples demonstrate that the EM-ESP approach is a vast improvement over the Coulombic approach in producing the molecular ESP contours that are comparable to the results obtained with higher-level quantum chemical methods. The atom-based parameters are shown to be transferrable between one part of closely related aromatic molecules. The atom-based ESP formulization and parametrization strategy can be extended to biological macromolecules, such as proteins, DNA, and RNA molecules. Since ESP is frequently used to rationalize and predict intermolecular interactions, we expect that the EM-ESP method will have important applications for studies of protein-ligand and protein-protein interactions in numerous areas of chemistry, molecular biology, and other life sciences.
静电势(ESP)是大分子内部和分子之间相互作用的一个重要性质,包括对生命科学有重要意义的那些相互作用。半经验量子化学方法和经典库仑计算甚至无法为许多这些生物分子提供定性的 ESP。本研究开发了一种新的经验 ESP 计算方法,即 EM-ESP,其中摒弃了传统的点原子电荷和经典库仑方程方法。在其位置上,EM-ESP 在分子空间中生成静电势 V(EM)(r),其是所有组成原子贡献的总和。原子 k 的贡献被表述为高斯函数 g(r(k);alpha(k),beta(k)) = alpha(k)/r(k)(betak),其中包含两个参数(alpha(k) 和 beta(k))。参数优化的基准是使用更高层次的量子化学方法(例如 CCSD/TZVP)获得的 ESP。一组基于原子的参数在常见有机分子的训练集中进行了优化。计算示例表明,与库仑方法相比,EM-ESP 方法在产生分子 ESP 轮廓方面有了很大的改进,这些轮廓与使用更高层次的量子化学方法获得的结果相当。基于原子的参数被证明可以在密切相关的芳香族分子的一部分之间转移。基于原子的 ESP 公式化和参数化策略可以扩展到生物大分子,如蛋白质、DNA 和 RNA 分子。由于 ESP 经常用于合理化和预测分子间相互作用,我们预计 EM-ESP 方法将在化学、分子生物学和其他生命科学的许多领域中对蛋白质-配体和蛋白质-蛋白质相互作用的研究具有重要应用。