Suppr超能文献

在ubp10基因缺失突变体中,Sir2依赖性的受损蛋白质不对称分离与基因组沉默无关。

Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing.

作者信息

Orlandi Ivan, Bettiga Maurizio, Alberghina Lilia, Nyström Thomas, Vai Marina

机构信息

Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy.

出版信息

Biochim Biophys Acta. 2010 May;1803(5):630-8. doi: 10.1016/j.bbamcr.2010.02.009. Epub 2010 Mar 4.

Abstract

Carbonylation of proteins is an irreversible oxidative damage that increases during both chronological and replicative yeast aging. In the latter, a spatial protein quality control system that relies on Sir2 is responsible for the asymmetrical damage segregation in the mother cells. Proper localization of Sir2 on chromatin depends on the deubiquitinating enzyme Ubp10, whose loss of function deeply affects the recombination and gene-silencing activities specific to Sir2. Here, we have analyzed the effects of SIR2 and UBP10 inactivations on carbonylated protein patterns obtained in two aging models such as stationary phase cells and size-selected old mother ones. In line with the endogenous situation of higher oxidative stress resulting from UBP10 inactivation, an increase of protein carbonylation has been found in the ubp10Delta stationary phase cells compared with sir2Delta ones. Moreover, Calorie Restriction had a salutary effect for both mutants by reducing carbonylated proteins accumulation. Remarkably, in the replicative aging model, whereas SIR2 inactivation resulted in a failure to establish damage asymmetry, the Sir2-dependent damage inheritance is maintained in the ubp10Delta mutant which copes with the increased oxidative damage by retaining it in the mother cells. This indicates that both Ubp10 and a correct association of Sir2 with the silenced chromatin are not necessary in such a process but also suggests that additional Sir2 activities on non-chromatin substrates are involved in the establishment of damage asymmetry.

摘要

蛋白质羰基化是一种不可逆的氧化损伤,在酵母的时序性衰老和复制性衰老过程中均会增加。在复制性衰老过程中,一种依赖Sir2的空间蛋白质质量控制系统负责母细胞中不对称损伤的分离。Sir2在染色质上的正确定位取决于去泛素化酶Ubp10,其功能丧失会深刻影响Sir2特有的重组和基因沉默活性。在此,我们分析了SIR2和UBP10失活对在两种衰老模型(如稳定期细胞和大小选择的老龄母细胞)中获得的羰基化蛋白质模式的影响。与UBP10失活导致的较高氧化应激的内源性情况一致,与sir2Delta稳定期细胞相比,ubp10Delta稳定期细胞中蛋白质羰基化增加。此外,热量限制通过减少羰基化蛋白质的积累对两种突变体都有有益作用。值得注意的是,在复制性衰老模型中,虽然SIR2失活导致无法建立损伤不对称性,但在ubp10Delta突变体中,Sir2依赖性损伤遗传得以维持,该突变体通过将增加的氧化损伤保留在母细胞中来应对。这表明在这样一个过程中,Ubp10和Sir2与沉默染色质的正确结合都不是必需的,但也表明Sir2在非染色质底物上的其他活性参与了损伤不对称性的建立。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验