Research unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Research Group Functional Genome Analysis, 18916 Dummerstorf, Germany.
Brief Funct Genomics. 2010 May;9(3):251-8. doi: 10.1093/bfgp/elq003. Epub 2010 Mar 8.
The benefit of functional genomics is to identify key pathways and functional networks of genes and candidate genes underlying the genetic control of phenotypes. Genetical genomics, i.e. the integration of genetic analysis and expression phenotypes, has the potential to uncover regulatory networks controlling the coordinated expression of genes and to map variation on the level of DNA affecting the mRNA expression. Here we illustrate our own attempts to apply functional genomics and genetical genomics approaches in order to identify functional networks of genes relevant to traits related to meat performance. Expression data of 74 M longissimus dorsi samples obtained using Affymetrix GeneChips were correlated with drip loss and principal components (PCs) with high loadings of meat quality traits. Functional annotation analyses revealed that differences in water holding capacity, early pH decline and ultimate pH were related to the ubiquitin-proteasome system, mitochondrial metabolic pathways and muscle structural aspects. In particular, 1279 genes were correlated with drip loss (P <or= 0.001; q <or= 0.004). Negatively correlated transcripts were enriched in functional categories like extracellular matrix receptor interaction and Ca-signalling. Transcripts with a positive correlation represented oxidative phosphorylation, mitochondrial pathways and transporter activity. A linkage analysis revealed 897 expression QTL (eQTL) with 104 eQTL mapping in QTL regions for water holding capacity including 8 cis eQTL. The reduction of the multi-dimensional data sets of meat performance traits into lower dimensions of PC and the genetical genomics approach of eQTL analysis proved to be appropriate means to detect relevant biological pathways and to experimentally prioritize candidate genes.
功能基因组学的优势在于鉴定表型遗传控制背后的关键途径和基因及候选基因的功能网络。遗传基因组学,即遗传分析与表达表型的整合,有可能揭示控制基因协调表达的调控网络,并绘制影响 mRNA 表达的 DNA 水平上的变异图谱。在这里,我们举例说明了我们自己应用功能基因组学和遗传基因组学方法的尝试,以鉴定与肉质性能相关性状相关的基因功能网络。使用 Affymetrix GeneChips 获得的 74 个背最长肌样本的表达数据与滴水损失和具有高肉质性状载荷的主成分 (PC) 相关。功能注释分析表明,持水力、早期 pH 值下降和最终 pH 值的差异与泛素-蛋白酶体系统、线粒体代谢途径和肌肉结构方面有关。特别是,有 1279 个基因与滴水损失相关 (P <or= 0.001;q <or= 0.004)。负相关的转录本在细胞外基质受体相互作用和 Ca 信号等功能类别中富集。正相关的转录本代表氧化磷酸化、线粒体途径和转运蛋白活性。连锁分析显示 897 个表达数量性状位点 (eQTL),其中 104 个 eQTL 映射到持水力 QTL 区域,包括 8 个顺式 eQTL。将肉质性能性状的多维数据集减少到 PC 的较低维度和 eQTL 分析的遗传基因组学方法被证明是检测相关生物学途径和实验优先考虑候选基因的适当手段。