Suppr超能文献

甲状腺激素调节的小鼠大脑皮层基因对激素来源的依赖性不同:一项在单羧酸转运蛋白 8 和脱碘酶 2 缺陷型小鼠中的研究。

Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.

机构信息

Center for Biomedical Research on Rare Diseases(Ciberer), 28029 Madrid, Spain.

出版信息

Endocrinology. 2010 May;151(5):2381-7. doi: 10.1210/en.2009-0944. Epub 2010 Mar 8.

Abstract

Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T(3) in the brain depends on T(3) transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T(3) from T(4). The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T(3) because Dio2 inactivation selectively affects the expression of negatively regulated genes.

摘要

甲状腺激素通过控制基因表达来影响大脑发育。大脑中活性激素 T(3)的浓度取决于 T(3)通过血脑屏障的转运,部分由单羧酸转运蛋白 8 (Mct8/MCT8)和生成 T(3)的 II 型脱碘酶 (D2)介导。这些途径中哪一种在调节脑基因表达方面的作用相对更大尚不清楚。为了阐明这个问题,我们分析了 Mct8 (Slc16a2)和 Dio2 基因敲除小鼠大脑皮层中依赖甲状腺激素的基因表达情况,这些基因单独或组合失活。我们使用了 34 个靶基因,这些基因是通过对出生后第 21 天的野生型对照和甲状腺功能减退小鼠大脑皮层的微阵列比较确定的,这些基因受甲状腺激素控制。Mct8 基因的失活(Mct8KO)对其中 31 个基因的表达没有影响。没有转运蛋白的正常基因表达主要是由于 D2 活性所致,因为 Mct8 和 Dio2 的联合失活导致 24 个基因的表达与甲状腺功能减退相似。Dio2 失活本身不会影响阳性调节基因的表达,但与甲状腺功能减退一样,它会增加阴性调节基因的表达。我们的结论是,Mct8KO 大脑皮层中的基因表达部分通过 D2 依赖性机制得到代偿。有趣的是,甲状腺激素对基因的正或负调节对 T(3)的来源敏感,因为 Dio2 失活选择性地影响负调节基因的表达。

相似文献

2
Brain Gene Expression in Systemic Hypothyroidism and Mouse Models of MCT8 Deficiency: The Mct8-Oatp1c1-Dio2 Triad.
Thyroid. 2021 Jun;31(6):985-993. doi: 10.1089/thy.2020.0649. Epub 2021 Mar 18.
3
Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.
Endocrinology. 2012 Jun;153(6):2919-28. doi: 10.1210/en.2011-1905. Epub 2012 Apr 20.
4
Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice.
Endocrinology. 2010 Feb;151(2):802-9. doi: 10.1210/en.2009-1053. Epub 2009 Dec 8.
5
Thyroid Hormone Economy in the Perinatal Mouse Brain: Implications for Cerebral Cortex Development.
Cereb Cortex. 2018 May 1;28(5):1783-1793. doi: 10.1093/cercor/bhx088.
6
Effect of Triiodothyroacetic Acid Treatment in Mct8 Deficiency: A Word of Caution.
Thyroid. 2016 May;26(5):618-26. doi: 10.1089/thy.2015.0388. Epub 2016 Feb 3.
7
Changes in thyroid status during perinatal development of MCT8-deficient male mice.
Endocrinology. 2013 Jul;154(7):2533-41. doi: 10.1210/en.2012-2031. Epub 2013 May 21.
9
Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.
PLoS One. 2014 May 12;9(5):e96915. doi: 10.1371/journal.pone.0096915. eCollection 2014.

引用本文的文献

1
Evidence for thyroid hormone regulation of amygdala-dependent fear-relevant memory and plasticity.
Mol Psychiatry. 2025 Jan;30(1):201-212. doi: 10.1038/s41380-024-02679-2. Epub 2024 Jul 22.
2
Thyroid hormone action during GABAergic neuron maturation: The quest for mechanisms.
Front Endocrinol (Lausanne). 2023 Oct 3;14:1256877. doi: 10.3389/fendo.2023.1256877. eCollection 2023.
4
In a zebrafish biomedical model of human Allan-Herndon-Dudley syndrome impaired MTH signaling leads to decreased neural cell diversity.
Front Endocrinol (Lausanne). 2023 May 4;14:1157685. doi: 10.3389/fendo.2023.1157685. eCollection 2023.
6
Good, bad, and neglectful: Astrocyte changes in neurodegenerative disease.
Free Radic Biol Med. 2022 Mar;182:93-99. doi: 10.1016/j.freeradbiomed.2022.02.020. Epub 2022 Feb 22.
7
Modulating Thyroid Hormone Levels in Adult Mice: Impact on Behavior and Compensatory Brain Changes.
J Thyroid Res. 2021 Jun 24;2021:9960188. doi: 10.1155/2021/9960188. eCollection 2021.
8
The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain.
Front Neurosci. 2021 Jun 29;15:703730. doi: 10.3389/fnins.2021.703730. eCollection 2021.
9
Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions.
Endocrinology. 2021 Aug 1;162(8). doi: 10.1210/endocr/bqab091.
10
Thyroid hormone: sex-dependent role in nervous system regulation and disease.
Biol Sex Differ. 2021 Mar 8;12(1):25. doi: 10.1186/s13293-021-00367-2.

本文引用的文献

2
A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport.
Endocrinology. 2009 Sep;150(9):4450-8. doi: 10.1210/en.2009-0209. Epub 2009 Jun 4.
3
A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9441-6. doi: 10.1073/pnas.0903227106. Epub 2009 May 13.
6
Minireview: Pathophysiological importance of thyroid hormone transporters.
Endocrinology. 2009 Mar;150(3):1078-83. doi: 10.1210/en.2008-1518. Epub 2009 Jan 29.
7
Minireview: Defining the roles of the iodothyronine deiodinases: current concepts and challenges.
Endocrinology. 2009 Mar;150(3):1097-107. doi: 10.1210/en.2008-1588. Epub 2009 Jan 29.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验