Suppr超能文献

SipC 的 C 端结合并束状化 F-actin 以促进沙门氏菌的入侵。

The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion.

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13357-63. doi: 10.1074/jbc.M109.094045. Epub 2010 Mar 8.

Abstract

Salmonella enterica serovar Typhimurium invade non-phagocytic cells by injecting bacterial effector proteins to exploit the host actin cytoskeleton network. SipC is such a Salmonella effector known to nucleate actin, bundle F-actin, and translocate type III effectors. The molecular mechanism of how SipC bundles F-actin and SipC domains responsible for these activities are not well characterized. We successfully separated these activities through a series of genetic deletion/insertions in SipC. We found that the C terminus (amino acids 200-409) of SipC bundled actin filaments using in vitro biochemical assays. We further demonstrated that amino acid residues 221-260 and 381-409 of full-length SipC were indispensable for its actin binding and bundling activities. Furthermore, Salmonella mutant strains lacking the actin bundling activity were less invasive into HeLa cells. These studies indicate that the C terminus of SipC bundles F-actin to promote Salmonella invasion.

摘要

肠炎沙门氏菌血清型 Typhimurium 通过注射细菌效应蛋白来利用宿主肌动蛋白细胞骨架网络入侵非吞噬细胞。SipC 是一种已知的沙门氏菌效应蛋白,能够引发肌动蛋白聚合、束状 F-肌动蛋白和转位 III 型效应蛋白。SipC 束状 F-肌动蛋白的分子机制以及负责这些活性的 SipC 结构域尚未得到很好的描述。我们通过在 SipC 中进行一系列基因缺失/插入成功分离了这些活性。我们发现 SipC 的 C 端(氨基酸 200-409)在体外生化测定中束状肌动蛋白丝。我们进一步证明全长 SipC 的氨基酸残基 221-260 和 381-409 对于其肌动蛋白结合和束状活性是必不可少的。此外,缺乏肌动蛋白束状活性的沙门氏菌突变株对 HeLa 细胞的侵袭性降低。这些研究表明 SipC 的 C 端束状 F-肌动蛋白以促进沙门氏菌的侵袭。

相似文献

1
The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion.
J Biol Chem. 2010 Apr 30;285(18):13357-63. doi: 10.1074/jbc.M109.094045. Epub 2010 Mar 8.
2
Delineation and characterization of the actin nucleation and effector translocation activities of Salmonella SipC.
Mol Microbiol. 2005 Mar;55(5):1379-89. doi: 10.1111/j.1365-2958.2004.04480.x.
3
Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella.
EMBO J. 1999 Sep 15;18(18):4926-34. doi: 10.1093/emboj/18.18.4926.
4
SipC multimerization promotes actin nucleation and contributes to Salmonella-induced inflammation.
Mol Microbiol. 2007 Dec;66(6):1548-56. doi: 10.1111/j.1365-2958.2007.06024.x. Epub 2007 Nov 12.
6
The type three secreted effector SipC regulates the trafficking of PERP during Salmonella infection.
Gut Microbes. 2016;7(2):136-45. doi: 10.1080/19490976.2015.1128626.
7
IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct.
Mol Microbiol. 2001 Oct;42(2):469-81. doi: 10.1046/j.1365-2958.2001.02654.x.
8
BipC, a Predicted Type 3 Secretion System Translocator Protein with Actin Binding Activity.
Front Cell Infect Microbiol. 2017 Jul 19;7:333. doi: 10.3389/fcimb.2017.00333. eCollection 2017.
9
SipB-SipC complex is essential for translocon formation.
PLoS One. 2013;8(3):e60499. doi: 10.1371/journal.pone.0060499. Epub 2013 Mar 27.
10
Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex.
Curr Biol. 2010 Jul 27;20(14):1316-20. doi: 10.1016/j.cub.2010.05.065. Epub 2010 Jun 24.

引用本文的文献

2
Recent progress in molecular mechanisms of Salmonella effectors involved in gut epithelium invasion.
Mol Biol Rep. 2025 Jun 16;52(1):601. doi: 10.1007/s11033-025-10715-9.
3
Type III Secretion System Effectors.
Int J Mol Sci. 2025 Mar 14;26(6):2611. doi: 10.3390/ijms26062611.
4
Infection biology of .
EcoSal Plus. 2024 Dec 12;12(1):eesp00012023. doi: 10.1128/ecosalplus.esp-0001-2023. Epub 2024 Jan 4.
5
Structural basis for subversion of host cell actin cytoskeleton during infection.
Sci Adv. 2023 Dec 8;9(49):eadj5777. doi: 10.1126/sciadv.adj5777.
6
Transmembrane substrates of type three secretion system injectisomes.
Microbiology (Reading). 2023 Jan;169(1). doi: 10.1099/mic.0.001292.
7
Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins.
Int J Mol Sci. 2022 Oct 1;23(19):11606. doi: 10.3390/ijms231911606.
8
Involvement of the Heat Shock Protein HtpG of Typhimurium in Infection and Proliferation in Hosts.
Front Cell Infect Microbiol. 2021 Nov 16;11:758898. doi: 10.3389/fcimb.2021.758898. eCollection 2021.
9
The Type III Secretion System: An Overview from Top to Bottom.
Microorganisms. 2021 Feb 22;9(2):451. doi: 10.3390/microorganisms9020451.
10
Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides.
F1000Res. 2020 May 15;9. doi: 10.12688/f1000research.22393.1. eCollection 2020.

本文引用的文献

1
Deciphering interplay between Salmonella invasion effectors.
PLoS Pathog. 2008 Apr 4;4(4):e1000037. doi: 10.1371/journal.ppat.1000037.
2
SipC multimerization promotes actin nucleation and contributes to Salmonella-induced inflammation.
Mol Microbiol. 2007 Dec;66(6):1548-56. doi: 10.1111/j.1365-2958.2007.06024.x. Epub 2007 Nov 12.
3
Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders.
J Biol Chem. 2007 Sep 7;282(36):26528-41. doi: 10.1074/jbc.M703617200. Epub 2007 Jul 2.
4
Protein delivery into eukaryotic cells by type III secretion machines.
Nature. 2006 Nov 30;444(7119):567-73. doi: 10.1038/nature05272.
5
Delineation and characterization of the actin nucleation and effector translocation activities of Salmonella SipC.
Mol Microbiol. 2005 Mar;55(5):1379-89. doi: 10.1111/j.1365-2958.2004.04480.x.
7
Salmonella entry into host cells: the work in concert of type III secreted effector proteins.
Microbes Infect. 2001 Nov-Dec;3(14-15):1293-8. doi: 10.1016/s1286-4579(01)01489-7.
8
Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells.
Cell Microbiol. 2001 Jun;3(6):417-26. doi: 10.1046/j.1462-5822.2001.00124.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验