Suppr超能文献

在体扩散张量磁共振成像和小鼠脑纤维示踪。

In vivo diffusion tensor magnetic resonance imaging and fiber tracking of the mouse brain.

机构信息

Department of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Germany.

出版信息

NMR Biomed. 2010 Aug;23(7):884-96. doi: 10.1002/nbm.1496.

Abstract

Until very recently, the study of neural architecture using fixed tissue has been a major scientific focus of neurologists and neuroanatomists. A non-invasive detailed insight into the brain's axonal connectivity in vivo has only become possible since the development of diffusion tensor magnetic resonance imaging (DT-MRI). This unique approach of analyzing axonal projections in the living brain was used in the present study to describe major white matter fiber tracts of the mouse brain and also to identify for the first time non-invasively the rich connectivity between the amygdala and different target regions. To overcome the difficulties associated with high spatially and temporally resolved DT-MRI measurements a 4-shot diffusion weighted spin echo (SE) echo planar imaging (EPI) protocol was adapted to mouse brain imaging at 9.4T. Diffusion tensor was calculated from data sets acquired by using 30 diffusion gradient directions while keeping the acquisition time at 91 min. Two fiber tracking algorithms were employed. A deterministic approach (fiber assignment by continuous tracking - FACT algorithm) allowed us to identify and generate the 3D representations of various neural pathways. A probabilistic approach was further used for the generation of probability maps of connectivity with which it was possible to investigate - in a statistical sense - all possible connecting pathways between selected seed points. We show here applications to determine the connection probability between regions belonging to the visual or limbic systems. This method does not require a priori knowledge about the projections' trajectories and is shown to be efficient even if the investigated pathway is long or three-dimensionally complex. Additionally, high resolution images of rotational invariant parameters of the diffusion tensor, such as fractional anisotropy, volume ratio or main eigenvalues allowed quantitative comparisons in-between regions of interest (ROIs) and showed significant differences between various white matter regions.

摘要

直到最近,使用固定组织研究神经结构一直是神经学家和神经解剖学家的主要科学重点。自扩散张量磁共振成像(DT-MRI)发展以来,才有可能对大脑轴突连接进行非侵入性的详细研究。本研究采用这种独特的活体大脑轴突投射分析方法,描述了小鼠大脑的主要白质纤维束,并首次非侵入性地识别了杏仁核与不同靶区之间丰富的连接。为了克服与高空间和时间分辨率 DT-MRI 测量相关的困难,我们对 9.4T 小鼠脑成像采用了 4 次激发扩散加权自旋回波(SE)回波平面成像(EPI)协议。从使用 30 个扩散梯度方向采集的数据集中计算出扩散张量,同时保持采集时间为 91 分钟。我们采用了两种纤维跟踪算法。一种确定性方法(连续跟踪纤维分配 - FACT 算法)允许我们识别和生成各种神经通路的 3D 表示。进一步使用了一种概率方法来生成连接概率图,通过该方法可以从统计学角度研究选定种子点之间的所有可能连接通路。我们在这里展示了用于确定属于视觉或边缘系统的区域之间连接概率的应用。该方法不需要关于投射轨迹的先验知识,即使所研究的途径很长或三维复杂,它也被证明是有效的。此外,扩散张量的各向同性不变参数(如分数各向异性、体积比或主要特征值)的高分辨率图像允许对感兴趣区域(ROI)之间进行定量比较,并显示出不同白质区域之间的显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验