Suppr超能文献

运用聚类离散时间逻辑模型建立护士人力配置与医院死亡率之间的关系。

Establishing the relationship between nurse staffing and hospital mortality using a clustered discrete-time logistic model.

机构信息

Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Katholieke Universiteit Leuven, Kapucijnenvoer 35, Blok D, Bus 7001, B3000 Leuven, and Universiteit Hasselt, Belgium.

出版信息

Stat Med. 2010 Mar 30;29(7-8):778-85. doi: 10.1002/sim.3756.

Abstract

Studies based on aggregated hospital outcome data have established that there is a relationship between nurse staffing and adverse events. However, this result could not be confirmed in Belgium where 96 per cent of the variability of nurse staffing levels over nursing units (belonging to different hospitals) is explained by within-hospital variability. To better appreciate the possible impact of nurse staffing levels on adverse events, we propose a multilevel approach reflecting the complex nature of the data. In particular we suggest a clustered discrete-time logistic model that captures the risks associated with a given unit in the patient's trajectory through the hospital. The model also allows for nurse staffing levels to affect the current and subsequent nursing unit (carry-over effect). In the model 'time' is represented by the sequential number of the nursing unit that the patient is passing through. The model incorporates hospital and nursing unit random effects to express that patients treated in the same hospital and taken care of by nurses of the same unit share a common environment. In this study we used Belgian national administrative databases for the year 2003 to assess the relationship between nurse staffing levels and nurse education variables with in-hospital mortality. The analysis was restricted to elective cardiac surgery patients. Lower nursing unit staffing levels in the general nursing units were associated with high in-hospital mortality in units past the traditional cardiac surgery nursing units.

摘要

基于医院综合结果数据的研究已经证实,护士人数与不良事件之间存在关联。然而,这一结果在比利时并未得到证实,因为在比利时,护理单元(分属于不同的医院)之间护士人数的 96%的变异性可以用医院内的变异性来解释。为了更好地了解护士人数对不良事件的可能影响,我们提出了一种多水平方法来反映数据的复杂性。特别是,我们建议使用一种聚类离散时间逻辑模型,该模型可以捕捉患者在医院就诊过程中特定单元的风险。该模型还允许护士人数影响当前和后续的护理单元(传递效应)。在该模型中,“时间”由患者正在通过的护理单元的连续编号表示。该模型纳入了医院和护理单元的随机效应,以表达在同一家医院接受治疗并由同一单元的护士照顾的患者具有共同的环境。在这项研究中,我们使用了 2003 年比利时国家行政数据库来评估护士人数和护士教育变量与院内死亡率之间的关系。分析仅限于择期心脏手术患者。普通护理单元的护理单元人员配备水平较低与传统心脏手术护理单元之后的单元中的高院内死亡率相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验