Hardin C C, Henderson E, Watson T, Prosser J K
Department of Biochemistry, North Carolina State University, Raleigh 27695.
Biochemistry. 1991 May 7;30(18):4460-72. doi: 10.1021/bi00232a013.
Telomeric DNA consists of G- and C-rich strands that are always polarized such that the G-rich strand extends past the 3' end of the duplex to form a 12-16-base overhang. These overhanging strands can self-associate in vitro to form intramolecular structures that have several unusual physical properties and at least one common feature, the presence of non-Watson-Crick G.G base pairs. The term "G-DNA" was coined for this class of structures (Cech, 1988). On the basis of gel electrophoresis, imino proton NMR, and circular dichroism (CD) results, we find that changing the counterions from sodium to potassium (in 20 mM phosphate buffers) specifically induces conformational transitions in the G-rich telomeric DNA from Tetrahymena, d(T2G4)4 (TET4), which results in a change from the intramolecular species to an apparent multistranded structure, accompanied by an increase in the melting temperature of the base pairs of greater than 25 degrees, as monitored by loss of the imino proton NMR signals. NMR semiselective spin-lattice relaxation rate measurements and HPLC size-exclusion chromatography studies show that in 20 mM potassium phosphate (pH 7) buffer (KP) TET4 is approximately twice the length of the form obtained in 20 mM sodium phosphate (pH 7) buffer (NaP) and that mixtures of Na+ and K+ produce mixtures of the two forms whose populations depend on the ratio of the cations. Since K+ and NH4+ are known to stabilize a parallel-stranded quadruplex structure of poly[r(I)4], we infer that the multistranded structure is a quadruplex. Our results indicate that specific differences in ionic interactions can result in a switch in telomeric DNAs between intramolecular hairpin-like or quadruplex-containing species and intermolecular quadruplex structures, all of which involve G.G base pairing interactions. We propose a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures. In this model monovalent cations stabilize the duplex and quadruplex forms via two distinct mechanisms, counterion condensation and octahedral coordination to the carbonyl groups in stacked planar guanine "quartet" base assemblies. Substituting one of the guanosine residues in each of the repeats of the Tetrahymena sequence to give the human telomeric DNA, d(T2AG3)4, results in less effective K(+)-dependent stabilization. Thus, the ion-dependent stabilization is attenuated by altering the sequence. Upon addition of the Watson-Crick (WC) complementary strand, only the Na(+)-stabilized structure dissociates quickly to form a WC double helix.(ABSTRACT TRUNCATED AT 400 WORDS)
端粒DNA由富含G和C的链组成,这些链总是呈极化状态,使得富含G的链延伸超过双链体的3'端,形成12 - 16个碱基的突出端。这些突出链在体外可以自我缔合形成具有几种异常物理性质且至少有一个共同特征的分子内结构,即存在非沃森-克里克G·G碱基对。“G-DNA”一词就是为这类结构创造的(切赫,1988年)。基于凝胶电泳、亚氨基质子核磁共振和圆二色性(CD)结果,我们发现(在20 mM磷酸盐缓冲液中)将抗衡离子从钠离子换成钾离子会特异性地诱导来自四膜虫的富含G的端粒DNA d(T2G4)4(TET4)发生构象转变,这导致从分子内结构转变为明显的多链结构,同时碱基对的解链温度升高超过25度,这通过亚氨基质子核磁共振信号的消失来监测。核磁共振半选择性自旋晶格弛豫速率测量和高效液相色谱尺寸排阻色谱研究表明,在20 mM磷酸钾(pH 7)缓冲液(KP)中,TET4的长度大约是在20 mM磷酸钠(pH 7)缓冲液(NaP)中获得的形式的两倍,并且Na⁺和K⁺的混合物会产生两种形式的混合物,其比例取决于阳离子的比例。由于已知K⁺和NH₄⁺能稳定聚[r(I)4]的平行链四链体结构,我们推断多链结构是四链体。我们的结果表明,离子相互作用的特定差异可导致端粒DNA在分子内发夹状或含四链体的物种与分子间四链体结构之间切换,所有这些都涉及G·G碱基配对相互作用。我们提出一个模型,其中G-DNA的双链或发夹形式是形成单链、双链或四链体四链体结构的折叠中间体。在这个模型中,单价阳离子通过两种不同机制稳定双链和四链体形式,即抗衡离子凝聚以及与堆叠平面鸟嘌呤“四重奏”碱基组装体中的羰基进行八面体配位。将四膜虫序列每个重复中的一个鸟苷残基替换为人类端粒DNA d(T2AG3)4,会导致依赖K⁺的稳定作用减弱。因此,通过改变序列,离子依赖的稳定作用会减弱。加入沃森-克里克(WC)互补链后,只有Na⁺稳定的结构会迅速解离形成WC双螺旋。(摘要截断于400字)