Kendall Mark A F
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Building 75-Cnr of College and Cooper Road The University of Queensland Brisbane, Brisbane, QLD4072, Australia.
Handb Exp Pharmacol. 2010(197):193-219. doi: 10.1007/978-3-642-00477-3_7.
Millions of people die each year from infectious disease, with a main stumbling block being our limited ability to deliver vaccines to optimal sites in the body. Specifically, effective methods to deliver vaccines into outer skin and mucosal layers--sites with immunological, physical and practical advantages that cannot be targeted via traditional delivery methods--are lacking. This chapter investigates the challenge for physical delivery approaches that are primarily needle-free. We examine the skin's structural and immunogenic properties in the context of the physical cell targeting requirements of the viable epidermis, and we review selected current physical cell targeting technologies engineered to meet these needs: needle and syringe, diffusion patches, liquid jet injectors, and microneedle arrays/patches. We then focus on biolistic particle delivery: we first analyze engineering these systems to meet demanding clinical needs, we then examine the interaction of biolistic devices with the skin, focusing on the mechanical interactions of ballistic impact and cell death, and finally we discuss the current clinical outcomes of one key application of engineered delivery devices--DNA vaccines.
每年有数百万人死于传染病,一个主要障碍是我们将疫苗输送到体内最佳部位的能力有限。具体而言,目前缺乏有效的方法将疫苗输送到外层皮肤和粘膜层,而这些部位具有免疫学、物理和实际应用方面的优势,传统的给药方法无法靶向这些部位。本章探讨了主要无针物理给药方法面临的挑战。我们在活表皮的物理细胞靶向要求的背景下研究皮肤的结构和免疫原性特性,并回顾了为满足这些需求而设计的当前选定的物理细胞靶向技术:针头注射器、扩散贴片、液体喷射注射器和微针阵列/贴片。然后我们将重点放在生物弹道粒子递送上:我们首先分析如何设计这些系统以满足严格的临床需求,接着研究生物弹道装置与皮肤的相互作用,重点关注弹道冲击和细胞死亡的机械相互作用,最后我们讨论工程化递送装置的一项关键应用——DNA疫苗的当前临床结果。