Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5821-6. doi: 10.1073/pnas.0903092107. Epub 2010 Mar 10.
Protein-chromophore interactions in photoreceptors often shift the chromophore absorbance maximum to a biologically relevant spectral region. A fundamental question regarding such spectral tuning effects is how the electronic ground state S(0) and excited state S(1) are modified by the protein. It is widely assumed that changes in energy gap between S(0) and S(1) are the main factor in biological spectral tuning. We report a generally applicable approach to determine if a specific residue modulates the energy gap, or if it alters the equilibrium nuclear geometry or width of the energy surfaces. This approach uses the effects that changes in these three parameters have on the absorbance and fluorescence emission spectra of mutants. We apply this strategy to a set of mutants of photoactive yellow protein (PYP) containing all 20 side chains at active site residue 46. While the mutants exhibit significant variation in both the position and width of their absorbance spectra, the fluorescence emission spectra are largely unchanged. This provides strong evidence against a major role for changes in energy gap in the spectral tuning of these mutants and reveals a change in the width of the S(1) energy surface. We determined the excited state lifetime of selected mutants and the observed correlation between the fluorescence quantum yield and lifetime shows that the fluorescence spectra are representative of the energy surfaces of the mutants. These results reveal that residue 46 tunes the absorbance spectrum of PYP largely by modulating the width of the S(1) energy surface.
光感受器中的蛋白质-发色团相互作用通常会将发色团的吸收最大值转移到生物相关的光谱区域。关于这种光谱调谐效应的一个基本问题是蛋白质如何修饰电子基态 S(0)和激发态 S(1)。人们普遍认为,S(0)和 S(1)之间能隙的变化是生物光谱调谐的主要因素。我们报告了一种通用方法,用于确定特定残基是否调节能隙,或者是否改变平衡核几何形状或能量表面的宽度。这种方法使用这三个参数的变化对突变体的吸收和荧光发射光谱的影响。我们将这种策略应用于一组包含活性位点残基 46 处的所有 20 个侧链的光活性黄色蛋白 (PYP) 突变体。虽然突变体在吸收光谱的位置和宽度上都表现出显著的变化,但荧光发射光谱变化不大。这强烈表明在这些突变体的光谱调谐中,能隙的变化不是主要因素,而是 S(1)能量表面的宽度发生了变化。我们测定了选定突变体的激发态寿命,观察到荧光量子产率和寿命之间的相关性表明,荧光光谱代表了突变体的能量表面。这些结果表明,残基 46 通过调节 S(1)能量表面的宽度来调节 PYP 的吸收光谱。