Philip Andrew F, Eisenman Kaury T, Papadantonakis George A, Hoff Wouter D
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.
Biochemistry. 2008 Dec 30;47(52):13800-10. doi: 10.1021/bi801730y.
Protein-ligand interactions alter the properties of active site groups to achieve specific biological functions. The active site of photoactive yellow protein (PYP) provides a model system for studying such functional tuning. PYP is a small bacterial photoreceptor with photochemistry based on its p-coumaric acid (pCA) chromophore. The absorbance maximum and pK(a) of the pCA in the active site of native PYP are shifted from 400 nm and 8.8 in water to 446 nm and 2.8 in the native protein milieu, respectively, by protein-ligand interactions. We report high-throughput microscale methods for the purification and spectroscopic investigation of PYP and use these to examine the role of active site residue Glu46 in PYP, which is hydrogen bonded to the pCA anion. The functional and structural attributes of the 19 substitution mutants of PYP at critical active site position 46 vary widely, with absorbance maxima from 441 to 478 nm, pCA fluorescence quantum yields from 0.19 to 1.4%, pCA pK(a) values from 3.0 to 9.0, and protein folding stabilities from 6.5 to 12.9 kcal/mol. The kinetics of the last photocycle transition vary by more than 4 orders of magnitude and are often strongly biphasic. Only E46Q PYP exhibits a greatly accelerated photocycling rate. All substitutions yield a folded, photoactive PYP, illustrating the robustness of protein structure and function. Correlations between side chain and mutant properties establish the importance of residue 46 in tuning the function of PYP and the significance of the strength of its hydrogen bond to the pCA. Native PYP exhibits the lowest values for pCA fluorescence quantum yield and pK(a), indicating their functional relevance. These results demonstrate the value of quantitative high-throughput biophysical studies of proteins.
蛋白质-配体相互作用改变活性位点基团的性质以实现特定的生物学功能。光活性黄色蛋白(PYP)的活性位点为研究这种功能调节提供了一个模型系统。PYP是一种小型细菌光感受器,其光化学基于对香豆酸(pCA)发色团。通过蛋白质-配体相互作用,天然PYP活性位点中pCA的最大吸收波长和pK(a)分别从水中的400 nm和8.8移至天然蛋白质环境中的446 nm和2.8。我们报告了用于PYP纯化和光谱研究的高通量微尺度方法,并利用这些方法研究了PYP中与pCA阴离子形成氢键的活性位点残基Glu46的作用。在关键活性位点位置46处的19个PYP替代突变体的功能和结构属性差异很大,最大吸收波长为441至478 nm,pCA荧光量子产率为0.19至1.4%,pCA pK(a)值为3.0至9.0,蛋白质折叠稳定性为6.5至12.9 kcal/mol。最后一个光循环转变的动力学变化超过4个数量级,且通常具有强烈的双相性。只有E46Q PYP表现出大大加快的光循环速率。所有替代都产生了折叠的、具有光活性的PYP,说明了蛋白质结构和功能的稳健性。侧链与突变体性质之间的相关性确立了残基46在调节PYP功能中的重要性以及其与pCA氢键强度的意义。天然PYP的pCA荧光量子产率和pK(a)值最低,表明它们具有功能相关性。这些结果证明了蛋白质定量高通量生物物理研究的价值。