Suppr超能文献

丝氨酸配体和严格保守的酪氨酸残基在腈水合酶中的作用的动力学和结构研究。

Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase.

机构信息

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Japan.

出版信息

J Biol Inorg Chem. 2010 Jun;15(5):655-65. doi: 10.1007/s00775-010-0632-3. Epub 2010 Mar 10.

Abstract

Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe(3+) or Co(3+) center with two modified Cys ligands: cysteine sulfininate (Cys-SO(2) (-)) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, alphaS113A and betaY72F. The alphaS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV-vis absorption spectra indicated that the electronic state of the Fe center was altered by the alphaS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the alphaS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV-vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The betaY72F mutant exhibited no activity. The structure of the betaY72F mutant was highly conserved but was found to be the inactivated state, with alphaCys114-SO(H) oxidized to Cys-SO(2) (-), suggesting that betaTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.

摘要

腈水合酶(NHase)能够催化腈的水合生成酰胺,其具有一个不寻常的 Fe(3+) 或 Co(3+) 中心,带有两个修饰的 Cys 配体:半胱氨酸亚砜(Cys-SO(2) (-))和半胱氨酸亚磺酸或半胱氨酸亚硫酸酯 [Cys-SO(H)]。已经提出了两种催化机制。一种是亚磺酰氧基激活水分子,使亲核攻击腈碳。另一种是 Ser 配体使严格保守的 Tyr 离子化,激活水分子。在这里,我们对来自红球菌 N771 的 Fe 型 NHase 的突变体进行了表征,取代了 Ser 和 Tyr 残基,alphaS113A 和 betaY72F。alphaS113A 突变部分影响了催化活性,并且没有改变动力学参数的 pH 曲线。紫外可见吸收光谱表明,Fe 中心的电子状态因 alphaS113A 突变而改变,但可以通过竞争性抑制剂正丁酸来阻止这种变化。alphaS113A 突变体的整体结构与野生型相似,但在催化腔周围观察到明显的变化。与紫外可见光谱一样,这些变化可通过底物或产物得到补偿。Ser 配体对于催化腔周围的结构很重要,但对于催化不是必需的。betaY72F 突变体没有活性。betaY72F 突变体的结构高度保守,但被发现处于失活状态,alphaCys114-SO(H) 被氧化为 Cys-SO(2) (-),这表明 betaTyr72 影响了 Fe 中心的电子状态。根据获得的结果讨论了催化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验