The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States.
J Am Chem Soc. 2011 Mar 23;133(11):3954-63. doi: 10.1021/ja108749f. Epub 2011 Feb 25.
Nitrile hydratases (NHases) are thiolate-ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)-NCR, M(III)-OH, M(III)-iminol, and M(III)-amide intermediates. There have been no reported crystallographically characterized examples of these key intermediates. Spectroscopic and kinetic data support the involvement of a M(III)-NCR intermediate. A H-bonding network facilitates this enzymatic reaction. Herein we describe two biomimetic Co(III)-NHase analogues that hydrate MeCN, and four crystallographically characterized NHase intermediate analogues, Co(III)(S(Me2)N(4)(tren))(MeCN) (1), Co(III)(S(Me2)N(4)(tren))(OH) (3), Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3)) (2), and Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3)) (5). Iminol-bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k(1)(298 K) = 2.98(5) M(-1) s(-1), ΔH(‡) = 12.65(3) kcal/mol, ΔS(‡) = -14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy E(a) = 13.2 kcal/mol is compared with that (E(a) = 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH- is ruled out by the fact that nitrile exchange from 1 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1)) is 2 orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C═O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere.
腈水合酶(NHases)是硫醇配体连接的 Fe(III)或 Co(III)酶,可在温和条件下将腈转化为相应的酰胺。拟议的 NHase 机制涉及 M(III)-NCR、M(III)-OH、M(III)-异亚氨酸和 M(III)-酰胺中间体。尚未有这些关键中间体的晶体结构特征的报道。光谱和动力学数据支持 M(III)-NCR 中间体的参与。氢键网络促进了这一酶反应。本文描述了两种仿生 Co(III)-NHase 类似物,它们可水合 MeCN,以及四个晶体结构特征的 NHase 中间体类似物,Co(III)(S(Me2)N(4)(tren))(MeCN) (1)、Co(III)(S(Me2)N(4)(tren))(OH) (3)、Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3)) (2)和Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3)) (5)。亚氨醇结合的 5 代表了任何配体环境中第一个 Co(III)-异亚氨酸化合物的例子。报道了 1 对腈水合的动力学参数 (k(1)(298 K) = 2.98(5) M(-1) s(-1),ΔH(‡) = 12.65(3) kcal/mol,ΔS(‡) = -14(7) e.u.),并将活化能 E(a) = 13.2 kcal/mol 与 NHase 酶的 E(a) = 5.5 kcal/mol 进行了比较。由于从 1 中进行腈交换的速度 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1))比腈水合慢 2 个数量级,并且结合的 3 型氢氧根离子不会促进腈水合,因此排除了涉及最初交换结合的 MeCN 与 OH-的机制。一种类似物的反应性,其中包含作为高度保守的 NHase 丝氨酸残基模拟物的烷氧基,表明该部分在更温和的条件下促进腈水合。烷氧基的氢键稳定了 Co(III)-异亚氨酸中间体。硫醇与烷氧基中间体结构的比较表明,当硫醇纳入配位球时,C≡N 键的活化和 C═O 键的形成沿反应坐标进行得更远。