Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany.
Structure. 2010 Mar 10;18(3):293-300. doi: 10.1016/j.str.2010.01.011.
Microbial rhodopsins execute diverse biological functions in the cellular membrane. A mechanistic understanding of their functional profile is, however, still limited. We used solid-state NMR (ssNMR) spectroscopy to study structure and dynamics of a 2 x 400 amino acid sensory rhodopsin/transducer (SRII/HtrII) complex from Natronomonas pharaonis in a natural membrane environment. We found a receptor-transducer binding interface in the ground state that significantly extends beyond the available X-ray structure. This binding domain involves the EF loop of the receptor and stabilizes the functionally relevant, directly adjacent HAMP domain of the transducer. Using 2D ssNMR difference spectroscopy, we identified protein residues that may act as a functional module around the retinal binding site during the early events of protein activation. These latter protein segments, the inherent plasticity of the HAMP domain, and the observation of an extended SRII/HtrII membrane-embedded interface may be crucial components for optimal signal relay efficiency across the cell membrane.
微生物视紫红质在细胞膜中执行多种生物学功能。然而,人们对其功能特性的机制理解仍然有限。我们使用固态 NMR(ssNMR)光谱法在天然膜环境中研究来自嗜盐古菌的 2 x 400 个氨基酸的感觉视紫红质/转导蛋白(SRII/HtrII)复合物的结构和动力学。我们在基态下发现了一个受体-转导结合界面,该界面大大超出了现有 X 射线结构的范围。该结合结构域涉及受体的 EF 环,并稳定了功能相关的、直接相邻的转导蛋白的 HAMP 结构域。通过二维 ssNMR 差谱法,我们鉴定了在蛋白质激活的早期事件中,可能在视黄醛结合位点周围充当功能模块的蛋白质残基。这些后段蛋白质、HAMP 结构域的固有可塑性以及观察到的延伸的 SRII/HtrII 膜嵌入式界面可能是跨细胞膜进行最佳信号传递效率的关键组成部分。