Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, UK.
Stat Methods Med Res. 2011 Aug;20(4):389-400. doi: 10.1177/0962280209358131. Epub 2010 Mar 11.
The behavioural Bayes approach to sample size determination for clinical trials assumes that the number of subsequent patients switching to a new drug from the current drug depends on the strength of the evidence for efficacy and safety that was observed in the clinical trials. The optimal sample size is the one which maximises the expected net benefit of the trial. The approach has been developed in a series of papers by Pezeshk and the present authors (Gittins JC, Pezeshk H. A behavioral Bayes method for determining the size of a clinical trial. Drug Information Journal 2000; 34: 355-63; Gittins JC, Pezeshk H. How Large should a clinical trial be? The Statistician 2000; 49(2): 177-87; Gittins JC, Pezeshk H. A decision theoretic approach to sample size determination in clinical trials. Journal of Biopharmaceutical Statistics 2002; 12(4): 535-51; Gittins JC, Pezeshk H. A fully Bayesian approach to calculating sample sizes for clinical trials with binary responses. Drug Information Journal 2002; 36: 143-50; Kikuchi T, Pezeshk H, Gittins J. A Bayesian cost-benefit approach to the determination of sample size in clinical trials. Statistics in Medicine 2008; 27(1): 68-82; Kikuchi T, Gittins J. A behavioral Bayes method to determine the sample size of a clinical trial considering efficacy and safety. Statistics in Medicine 2009; 28(18): 2293-306; Kikuchi T, Gittins J. A Bayesian procedure for cost-benefit evaluation of a new drug in multi-national clinical trials. Statistics in Medicine 2009 (Submitted)). The purpose of this article is to provide a rationale for experimental designs which allocate more patients to the new treatment than to the control group. The model uses a logistic weight function, including an interaction term linking efficacy and safety, which determines the number of patients choosing the new drug, and hence the resulting benefit. A Monte Carlo simulation is employed for the calculation. Having a larger group of patients on the new drug in general makes it easier to recruit patients to the trial and may also be ethically desirable. Our results show that this can be done with very little if any reduction in expected net benefit.
行为贝叶斯方法用于临床试验的样本量确定,假设从当前药物切换到新药的后续患者数量取决于临床试验中观察到的疗效和安全性证据的强度。最佳样本量是使试验的预期净收益最大化的样本量。该方法由 Pezeshk 和本研究作者(Gittins JC、Pezeshk H. 一种用于确定临床试验规模的行为贝叶斯方法。药物信息杂志 2000;34:355-63;Gittins JC、Pezeshk H. 临床试验应该有多大?统计学家 2000;49(2):177-87;Gittins JC、Pezeshk H. 临床试验中样本量确定的决策理论方法。生物制药统计杂志 2002;12(4):535-51;Gittins JC、Pezeshk H. 一种用于计算二分类反应临床试验样本量的完全贝叶斯方法。药物信息杂志 2002;36:143-50;Kikuchi T、Pezeshk H、Gittins J. 临床试验中样本量确定的贝叶斯成本效益方法。医学统计杂志 2008;27(1):68-82;Kikuchi T、Gittins J. 一种考虑疗效和安全性的临床试验样本量确定的行为贝叶斯方法。医学统计杂志 2009;28(18):2293-306;Kikuchi T、Gittins J. 一种用于多国临床试验中新型药物成本效益评估的贝叶斯方法。医学统计杂志 2009(提交))。本文的目的是为分配给新治疗组的患者多于对照组的实验设计提供依据。该模型使用逻辑权重函数,包括链接疗效和安全性的交互项,该函数确定选择新药的患者数量,从而产生相应的收益。蒙特卡罗模拟用于计算。让更多的患者服用新药通常可以更容易地招募患者参加试验,并且在伦理上也可能是可取的。我们的结果表明,这可以在预期净收益几乎没有减少的情况下完成。