Suppr超能文献

一种用于确定临床试验样本量的贝叶斯成本效益方法。

A Bayesian cost-benefit approach to the determination of sample size in clinical trials.

作者信息

Kikuchi Takashi, Pezeshk Hamid, Gittins John

机构信息

Centre for Economics and Policy in Health, IMSCaR, University of Wales, Dean Street Building, Dean Street, Bangor, Gwynedd LL57 1UT, U.K.

出版信息

Stat Med. 2008 Jan 15;27(1):68-82. doi: 10.1002/sim.2965.

Abstract

Current practice for sample size computations in clinical trials is largely based on frequentist or classical methods. These methods have the drawback of requiring a point estimate of the variance of the treatment effect and are based on arbitrary settings of type I and II errors. They also do not directly address the question of achieving the best balance between the cost of the trial and the possible benefits from using the new treatment, and fail to consider the important fact that the number of users depends on the evidence for improvement compared with the current treatment. Our approach, Behavioural Bayes (or BeBay for short), assumes that the number of patients switching to the new medical treatment depends on the strength of the evidence that is provided by clinical trials, and takes a value between zero and the number of potential patients. The better a new treatment, the more the number of patients who want to switch to it and the more the benefit is obtained. We define the optimal sample size to be the sample size that maximizes the expected net benefit resulting from a clinical trial. Gittins and Pezeshk (Drug Inf. Control 2000; 34:355-363; The Statistician 2000; 49(2):177-187) used a simple form of benefit function and assumed paired comparisons between two medical treatments and that the variance of the treatment effect is known. We generalize this setting, by introducing a logistic benefit function, and by extending the more usual unpaired case, without assuming the variance to be known.

摘要

目前临床试验中样本量计算的做法很大程度上基于频率论或经典方法。这些方法的缺点是需要对治疗效果的方差进行点估计,并且基于I型和II型错误的任意设定。它们也没有直接解决在试验成本和使用新疗法可能带来的益处之间实现最佳平衡的问题,并且没有考虑到一个重要事实,即使用者的数量取决于与当前治疗相比改善的证据。我们的方法,即行为贝叶斯(简称为BeBay),假设转向新医疗疗法的患者数量取决于临床试验提供的证据强度,并且取值在零和潜在患者数量之间。新疗法越好,想要转向它的患者数量就越多,获得的益处也就越多。我们将最优样本量定义为使临床试验产生的预期净效益最大化的样本量。吉廷斯和佩泽什克(《药物信息与控制》2000年;34:355 - 363;《统计学家》2000年;49(2):177 - 187)使用了一种简单形式的效益函数,并假设两种医疗疗法之间进行配对比较,且治疗效果的方差是已知的。我们通过引入逻辑效益函数并扩展更常见的非配对情况来推广这种设定,而不假设方差是已知的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验