Department of Animal Sciences, University of Arizona, 1650 East Limberlost Drive, Tucson, Arizona 85719, USA.
J Endocrinol. 2010 Jun;205(3):211-24. doi: 10.1677/JOE-09-0399. Epub 2010 Mar 11.
Low birth weight is an important risk factor for impaired glucose tolerance and diabetes later in life. One hypothesis is that fetal beta-cells inherit a persistent defect as a developmental response to fetal malnutrition, a primary cause of intrauterine growth restriction (IUGR). Our understanding of fetal programing events in the human endocrine pancreas is limited, but several animal models of IUGR extend our knowledge of developmental programing in beta-cells. Pathological outcomes such as beta-cell dysfunction, impaired glucose tolerance, and diabetes are often observed in adult offspring from these animal models, similar to the associations of low birth weight and metabolic diseases in humans. However, the identified mechanisms underlying beta-cell dysfunction across models and species are varied, likely resulting from the different methodologies used to induce experimental IUGR, as well as from intraspecies differences in pancreas development. In this review, we first present the evidence for human beta-cell dysfunction being associated with low birth weight or IUGR. We then evaluate relevant animal models of IUGR, focusing on the strengths of each, in order to define critical periods and types of nutrient deficiencies that can lead to impaired beta-cell function. These findings frame our current knowledge of beta-cell developmental programing and highlight future research directions to clarify the mechanisms of beta-cell dysfunction for human IUGR.
低出生体重是糖耐量受损和成年后患糖尿病的一个重要危险因素。有一种假说认为,胎儿β细胞在发育过程中会遗传到一种持续性缺陷,作为对胎儿营养不良的反应,而胎儿营养不良是宫内生长受限(IUGR)的主要原因。我们对人类内分泌胰腺中胎儿编程事件的了解有限,但几种 IUGR 动物模型扩展了我们对β细胞发育编程的认识。这些动物模型的成年后代通常会出现β细胞功能障碍、糖耐量受损和糖尿病等病理后果,类似于人类低出生体重和代谢疾病之间的关联。然而,在不同模型和物种中,导致β细胞功能障碍的机制各不相同,这可能是由于诱导实验性 IUGR 所采用的不同方法学,以及物种间胰腺发育的差异所致。在这篇综述中,我们首先介绍了人类β细胞功能障碍与低出生体重或 IUGR 相关的证据。然后,我们评估了 IUGR 的相关动物模型,重点关注每个模型的优势,以确定可能导致β细胞功能障碍的关键时期和营养缺乏类型。这些发现构成了我们目前对β细胞发育编程的认识,并强调了未来研究方向,以阐明人类 IUGR 中β细胞功能障碍的机制。