Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
IEEE Trans Pattern Anal Mach Intell. 2010 Apr;32(4):693-708. doi: 10.1109/TPAMI.2009.53.
Computer vision attention processes assign variable-hypothesized importance to different parts of the visual input and direct the allocation of computational resources. This nonuniform allocation might help accelerate the image analysis process. This paper proposes a new bottom-up attention mechanism. Rather than taking the traditional approach, which tries to model human attention, we propose a validated stochastic model to estimate the probability that an image part is of interest. We refer to this probability as saliency and thus specify saliency in a mathematically well-defined sense. The model quantifies several intuitive observations, such as the greater likelihood of correspondence between visually similar image regions and the likelihood that only a few of interesting objects will be present in the scene. The latter observation, which implies that such objects are (relaxed) global exceptions, replaces the traditional preference for local contrast. The algorithm starts with a rough preattentive segmentation and then uses a graphical model approximation to efficiently reveal which segments are more likely to be of interest. Experiments on natural scenes containing a variety of objects demonstrate the proposed method and show its advantages over previous approaches.
计算机视觉注意力过程会对视觉输入的不同部分赋予可变的假设重要性,并指导计算资源的分配。这种非均匀分配可能有助于加速图像分析过程。本文提出了一种新的自下而上的注意力机制。我们没有采用传统的方法来模拟人类注意力,而是提出了一种经过验证的随机模型来估计图像某个部分是否引人关注的概率。我们将这个概率称为显著度,并因此以数学上定义明确的方式指定显著度。该模型量化了几个直观的观察结果,例如视觉相似的图像区域之间更有可能对应,以及场景中只会出现少数感兴趣的对象的可能性。后一个观察结果意味着这些对象是(放宽的)全局异常,取代了传统上对局部对比度的偏好。该算法从粗略的前注意分割开始,然后使用图形模型近似来有效地揭示哪些片段更有可能引起关注。对包含各种对象的自然场景的实验证明了所提出的方法,并展示了其相对于先前方法的优势。