Suppr超能文献

无线多媒体传感器网络中的模糊自适应采样块压缩感知。

Fuzzy Adaptive-Sampling Block Compressed Sensing for Wireless Multimedia Sensor Networks.

机构信息

Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

Department of Computer Science, Faculty of Science, Royal University of Phnom Penh, Phnom Penh 12156, Cambodia.

出版信息

Sensors (Basel). 2020 Oct 31;20(21):6217. doi: 10.3390/s20216217.

Abstract

The transmission of high-volume multimedia content (e.g., images) is challenging for a resource-constrained wireless multimedia sensor network (WMSN) due to energy consumption requirements. Redundant image information can be compressed using traditional compression techniques at the cost of considerable energy consumption. Fortunately, compressed sensing (CS) has been introduced as a low-complexity coding scheme for WMSNs. However, the storage and processing of CS-generated images and measurement matrices require substantial memory. Block compressed sensing (BCS) can mitigate this problem. Nevertheless, allocating a fixed sampling to all blocks is impractical since each block holds different information. Although solutions such as adaptive block compressed sensing (ABCS) exist, they lack robustness across various types of images. As a solution, we propose a holistic WMSN architecture for image transmission that performs well on diverse images by leveraging saliency and standard deviation features. A fuzzy logic system (FLS) is then used to determine the appropriate features when allocating the sampling, and each corresponding block is resized using CS. The combined FLS and BCS algorithms are implemented with smoothed projected Landweber (SPL) reconstruction to determine the convergence speed. The experiments confirm the promising performance of the proposed algorithm compared with that of conventional and state-of-the-art algorithms.

摘要

由于资源受限的无线多媒体传感器网络(WMSN)的能量消耗要求,大容量多媒体内容(例如图像)的传输具有挑战性。传统的压缩技术可以压缩冗余的图像信息,但这会消耗相当多的能量。幸运的是,压缩感知(CS)已被引入作为 WMSN 的低复杂度编码方案。然而,CS 生成的图像和测量矩阵的存储和处理需要大量的内存。块压缩感知(BCS)可以缓解这个问题。然而,为所有块分配固定的采样是不切实际的,因为每个块都包含不同的信息。尽管存在自适应块压缩感知(ABCS)等解决方案,但它们在各种类型的图像中缺乏鲁棒性。作为解决方案,我们提出了一种整体的 WMSN 架构,用于图像传输,通过利用显著度和标准差特征,在不同的图像上表现良好。然后使用模糊逻辑系统(FLS)在分配采样时确定适当的特征,并且使用 CS 对每个相应的块进行调整大小。使用平滑投影 Landweber(SPL)重建来实现组合的 FLS 和 BCS 算法,以确定收敛速度。实验证实了与传统和最先进算法相比,所提出算法的性能有很大的提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa50/7662818/3f565acc4152/sensors-20-06217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验