Vrije Universiteit Brussel, Brussels, Belgium.
IEEE Trans Vis Comput Graph. 2010 May-Jun;16(3):513-28. doi: 10.1109/TVCG.2009.90.
The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.
本文研究了网格几何编码中局部误差控制的新概念。与传统的使用均方误差作为目标失真度量的网格编码系统不同,本文提出了一种新的 L-无穷网格编码方法,其目标失真度量是 L-无穷失真。在这种情况下,提出了一种新的基于小波的 L-无穷约束网格编码方法,该方法确保原始和解码网格中顶点位置之间的最大误差低于给定的上限。此外,所提出的系统在 L-无穷意义上实现了可扩展性,即输入流的任何解码都将对应于可预测的 L-无穷失真上限。该方法的一个实例被证明适用于 MESHGRID,这是一个可扩展的 3D 对象编码系统,是 MPEG-4 AFX 的一部分。在这种情况下,实验证明了可扩展 L-无穷编码相对于 L-2 定向编码的优势。可以得出结论,所提出的 L-无穷网格编码方法保证了解码网格中局部误差的上限,它能够快速实时地实现速率分配,并保留了所使用的可扩展网格编解码器的所有可扩展性特征和动画功能。