Laboratory of Genetics and Molecular Medicine, Instituto de Biomedicina de Valencia, CSIC and CIBER de Enfermedades Raras (CIBERER), C/Jaume Roig 11, 46010, Valencia, Spain.
Adv Exp Med Biol. 2009;652:129-37. doi: 10.1007/978-90-481-2813-6_9.
Mitochondrial dysfunction plays a relevant role in the pathogenesis of neurological and neuromuscular diseases. Mitochondria may be involved as a primary defect of either the mtDNA or nuclear genome encoded subunits of the respiratory chain. These organelles have also been directly involved in the pathogenesis of Mendelian neurodegenerative disorders caused by mutations in nuclear-encoded proteins targeted to mitochondria, such as Friedreich ataxia, hereditary spastic paraplegia, or some monogenic forms of Parkinson disease. In addition, mitochondria also participate in the pathogenic mechanisms affecting neurodegenerative disorders such Huntington disease or amyotrophic lateral sclerosis. Cell death in neurodegeneration associated with neurological diseases usually occurs by apoptosis being the most common route the intrinsic mitochondria pathway. Along with regulation of apoptosis, mitochondria also modulate cell pathogenesis by means of energy production, reactive oxygen species (ROS) generation, and calcium buffering. Mitochondria form dynamic tubular networks that continually change their shape and move throughout the cell. Here we review the critical role of mitochondria in monogenic neuromuscular disorders, especially inherited peripheral neuropathies caused by abnormal mitochondrial network dynamics. In yeast, at least three proteins are required for mitochondrial fusion, Fzo1, Ugo1 and Mgm1. The human counterparts of Fzo1p and Mgm1p, MFN1/MFN2 and OPA1 respectively, are related to human disease. Mutations in the MFN2 gene cause the most frequent form of autosomal dominant axonal Charcot-Marie-Tooth disease, CMT2A. Mutations in OPA1 cause autosomal dominant optic atrophy (ADOA). For the opposite process of mitochondrial fission, four proteins are at least involved in yeast. Very recently a mutation in the DRP1 gene (the human homologue of yeast Dnm1) has been reported in an infant with a syndrome with encephalopathy, optic atrophy and lactic acidosis. GDAP1 has been recently related to the mitochondrial fission in mammalian cells and, interestingly, mutations in the GDAP1 gene are the cause of the most common form of autosomal recessive CMT, either axonal or demyelinating. These and other disorders are the most recent instances of disease related with mitochondrial abnormal motility, fusion and fission. We propose that the pathomechanisms underlying these disorders also include a complex relationship between mitochondrial dynamics and transport across the axon.
线粒体功能障碍在神经和神经肌肉疾病的发病机制中起重要作用。线粒体可能作为呼吸链的 mtDNA 或核基因组编码亚单位的原发性缺陷而参与其中。这些细胞器还直接参与了由靶向线粒体的核编码蛋白突变引起的孟德尔神经退行性疾病的发病机制,例如弗里德里希共济失调、遗传性痉挛性截瘫或某些单基因形式的帕金森病。此外,线粒体还参与影响神经退行性疾病的发病机制,例如亨廷顿病或肌萎缩侧索硬化症。与神经疾病相关的神经退行性细胞死亡通常通过细胞凋亡发生,细胞凋亡是内在线粒体途径最常见的途径。除了调节细胞凋亡外,线粒体还通过能量产生、活性氧 (ROS) 生成和钙缓冲来调节细胞发病机制。线粒体形成动态管状网络,不断改变其形状并在整个细胞中移动。在这里,我们回顾了线粒体在单基因神经肌肉疾病中的关键作用,特别是由异常线粒体网络动力学引起的遗传性周围神经病。在酵母中,至少需要三种蛋白质才能进行线粒体融合,即 Fzo1、Ugo1 和 Mgm1。Fzo1p 和 Mgm1p 的人类对应物 MFN1/MFN2 和 OPA1 分别与人类疾病有关。MFN2 基因突变导致最常见的常染色体显性轴索型腓骨肌萎缩症,CMT2A。OPA1 基因突变导致常染色体显性视神经萎缩(ADOA)。对于线粒体分裂的相反过程,酵母中至少有四种蛋白质参与。最近,在一名患有脑病、视神经萎缩和乳酸性酸中毒的婴儿中报告了 DRP1 基因突变(酵母 Dnm1 的人类同源物)。GDAP1 最近与哺乳动物细胞中线粒体分裂有关,有趣的是,GDAP1 基因突变是最常见的常染色体隐性腓骨肌萎缩症,无论是轴索型还是脱髓鞘型的原因。这些和其他疾病是与线粒体异常运动、融合和分裂相关的疾病的最新实例。我们提出,这些疾病的发病机制还包括线粒体动力学与轴突转运之间的复杂关系。