Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.
Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.
Sci Rep. 2023 Jul 25;13(1):12003. doi: 10.1038/s41598-023-38588-7.
Focal segmental glomerulosclerosis (FSGS) is a common glomerular injury leading to end-stage renal disease. Monogenic FSGS is primarily ascribed to decreased podocyte integrity. Variants between residues 184 and 245 of INF2, an actin assembly factor, produce the monogenic FSGS phenotype. Meanwhile, variants between residues 57 and 184 cause a dual-faceted disease involving peripheral neurons and podocytes (Charcot-Marie-Tooth CMT/FSGS). To understand the molecular basis for INF2 disorders, we compared structural and cytoskeletal effects of INF2 variants classified into two subgroups: One (G73D, V108D) causes the CMT/FSGS phenotype, and the other (T161N, N202S) produces monogenic FSGS. Molecular dynamics analysis revealed that all INF2 variants show distinct flexibility compared to the wild-type INF2 and could affect stability of an intramolecular interaction between their N- and C-terminal segments. Immunocytochemistry of cells expressing INF2 variants showed fewer actin stress fibers, and disorganization of cytoplasmic microtubule arrays. Notably, CMT/FSGS variants caused more prominent changes in mitochondrial distribution and fragmentation than FSGS variants and these changes correlated with the severity of cytoskeletal disruption. Our results indicate that CMT/FSGS variants are associated with more severe global cellular defects caused by disrupted cytoskeleton-organelle interactions than are FSGS variants. Further study is needed to clarify tissue-specific pathways and/or cellular functions implicated in FSGS and CMT phenotypes.
局灶节段性肾小球硬化症(FSGS)是一种常见的肾小球损伤,可导致终末期肾病。单基因 FSGS 主要归因于足细胞完整性降低。肌动蛋白组装因子 INF2 的 184 至 245 位残基之间的变异导致单基因 FSGS 表型。同时,57 至 184 位残基之间的变异导致涉及周围神经元和足细胞的双重疾病(Charcot-Marie-Tooth CMT/FSGS)。为了了解 INF2 疾病的分子基础,我们比较了分为两组的 INF2 变异的结构和细胞骨架效应:一组(G73D、V108D)引起 CMT/FSGS 表型,另一组(T161N、N202S)产生单基因 FSGS。分子动力学分析表明,与野生型 INF2 相比,所有 INF2 变体都表现出明显的灵活性,并且可能影响其 N-和 C-末端片段之间的分子内相互作用的稳定性。表达 INF2 变体的细胞的免疫细胞化学显示,肌动蛋白应力纤维较少,细胞质微管阵列紊乱。值得注意的是,与 FSGS 变体相比,CMT/FSGS 变体引起的线粒体分布和碎片化变化更为明显,这些变化与细胞骨架破坏的严重程度相关。我们的结果表明,与 FSGS 变体相比,CMT/FSGS 变体与由细胞骨架-细胞器相互作用破坏引起的更严重的整体细胞缺陷相关。需要进一步研究以阐明与 FSGS 和 CMT 表型相关的组织特异性途径和/或细胞功能。