Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA.
J Am Chem Soc. 2010 Apr 7;132(13):4669-77. doi: 10.1021/ja908104s.
Cold denaturation is a general property of globular proteins, and the process provides insight into the origins of the cooperativity of protein folding and the nature of partially folded states. Unfortunately, studies of protein cold denaturation have been hindered by the fact that the cold denatured state is normally difficult to access experimentally. Special conditions such as addition of high concentrations of denaturant, encapsulation into reverse micelles, the formation of emulsified solutions, high pressure, or extremes of pH have been applied, but these can perturb the unfolded state of proteins. The cold denatured state of the C-terminal domain of the ribosomal protein L9 can be populated under native-like conditions by taking advantage of a destabilizing point mutation which leads to cold denaturation at temperatures above 0 degrees C. This state is in slow exchange with the native state on the NMR time scale. Virtually complete backbone (15)N, (13)C, and (1)H as well as side-chain (13)C(beta) and (1)H(beta) chemical shift assignments were obtained for the cold denatured state at pH 5.7, 12 degrees C. Chemical shift analysis, backbone N-H residual dipolar couplings, amide proton NOEs, and R(2) relaxation rates all indicate that the cold denatured state of CTL9 (the C-terminal domain of the ribosomal protein L9) not only contains significant native-like secondary structure but also non-native structure. The regions corresponding to the two native alpha-helices show a strong tendency to populate helical Phi and Psi angles. The segment which connects alpha-helix 2 and beta-strand 2 (residues 107-124) in the native state exhibits a significant preference to form non-native helical structure in the cold denatured state. The structure observed in the cold denatured state of the I98A mutant is similar to that observed in the pH 3.8 unfolded state of wild type CTL9 at 25 degrees C, suggesting that it is a robust feature of the denatured state ensemble of this protein. The implications for protein folding and for studies of cold denatured states are discussed.
冷变性是球状蛋白的普遍性质,该过程为理解蛋白质折叠协同性的起源和部分折叠状态的本质提供了线索。不幸的是,蛋白质冷变性的研究受到这样一个事实的阻碍,即冷变性状态通常难以在实验中获得。已经应用了特殊条件,如添加高浓度变性剂、包封到反胶束中、形成乳化溶液、高压或极端 pH 值等,但这些条件会扰乱蛋白质的未折叠状态。核糖体蛋白 L9 的 C 末端结构域的冷变性状态可以在类似于天然条件下通过利用导致在 0°C 以上温度下冷变性的不稳定点突变来填充。该状态在 NMR 时间尺度上与天然状态处于缓慢交换状态。在 pH 值为 5.7、12°C 时,获得了冷变性状态下几乎完整的骨架(15)N、(13)C 和(1)H 以及侧链(13)C(β)和(1)H(β)化学位移分配。化学位移分析、骨架 N-H 残基偶合、酰胺质子 NOE 和 R(2)弛豫率均表明,CTL9(核糖体蛋白 L9 的 C 末端结构域)的冷变性状态不仅含有显著的类似天然的二级结构,还含有非天然结构。对应于两个天然α-螺旋的区域显示出强烈的倾向,以填充螺旋 Phi 和 Psi 角。在天然状态下连接α-螺旋 2 和β-链 2(残基 107-124)的片段在冷变性状态下表现出形成非天然螺旋结构的显著偏好。在 I98A 突变体的冷变性状态下观察到的结构与在 25°C 时野生型 CTL9 的 pH 值 3.8 未折叠状态下观察到的结构相似,这表明它是该蛋白质变性状态总体的一个稳健特征。讨论了对蛋白质折叠和冷变性状态研究的影响。