School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
Mob DNA. 2010 Jan 25;1(1):2. doi: 10.1186/1759-8753-1-2.
Transposition is disruptive in nature and, thus, it is imperative for host genomes to evolve mechanisms that suppress the activity of transposable elements (TEs). At the same time, transposition also provides diverse sequences that can be exapted by host genomes as functional elements. These notions form the basis of two competing hypotheses pertaining to the role of epigenetic modifications of TEs in eukaryotic genomes: the genome defense hypothesis and the exaptation hypothesis. To date, all available evidence points to the genome defense hypothesis as the best explanation for the biological role of TE epigenetic modifications.
We evaluated several predictions generated by the genome defense hypothesis versus the exaptation hypothesis using recently characterized epigenetic histone modification data for the human genome. To this end, we mapped chromatin immunoprecipitation sequence tags from 38 histone modifications, characterized in CD4+ T cells, to the human genome and calculated their enrichment and depletion in all families of human TEs. We found that several of these families are significantly enriched or depleted for various histone modifications, both active and repressive. The enrichment of human TE families with active histone modifications is consistent with the exaptation hypothesis and stands in contrast to previous analyses that have found mammalian TEs to be exclusively repressively modified. Comparisons between TE families revealed that older families carry more histone modifications than younger ones, another observation consistent with the exaptation hypothesis. However, data from within family analyses on the relative ages of epigenetically modified elements are consistent with both the genome defense and exaptation hypotheses. Finally, TEs located proximal to genes carry more histone modifications than the ones that are distal to genes, as may be expected if epigenetically modified TEs help to regulate the expression of nearby host genes.
With a few exceptions, most of our findings support the exaptation hypothesis for the role of TE epigenetic modifications when vetted against the genome defense hypothesis. The recruitment of epigenetic modifications may represent an additional mechanism by which TEs can contribute to the regulatory functions of their host genomes.
转座是具有破坏性的,因此,宿主基因组进化出抑制转座元件 (TEs) 活性的机制是至关重要的。与此同时,转座也提供了多样化的序列,这些序列可以被宿主基因组作为功能元件来适应。这些概念构成了关于表观遗传修饰的 TEs 在真核基因组中的作用的两个相互竞争的假设的基础:基因组防御假说和适应假说。迄今为止,所有可用的证据都指向基因组防御假说,认为这是 TEs 表观遗传修饰的生物学作用的最佳解释。
我们使用最近对人类基因组进行的表观遗传组蛋白修饰数据,评估了基因组防御假说与适应假说所产生的几个预测。为此,我们将来自 38 种组蛋白修饰的染色质免疫沉淀序列标签映射到人类基因组,并计算了它们在所有人类 TE 家族中的富集和缺失情况。我们发现,这些家族中的一些家族在各种组蛋白修饰中,无论是激活的还是抑制的,都显著富集或缺失。富含人类 TE 家族的活性组蛋白修饰与适应假说一致,与以前的分析结果形成对比,以前的分析结果发现哺乳动物 TEs 仅受抑制性修饰。对 TE 家族之间的比较表明,较老的家族比较年轻的家族携带更多的组蛋白修饰,这也是适应假说的另一个观察结果。然而,基于相对年龄的 TE 家族内的分析数据与基因组防御和适应假说都一致。最后,位于基因附近的 TE 携带的组蛋白修饰比位于基因远端的 TE 多,这可能是因为表观遗传修饰的 TE 有助于调节附近的宿主基因的表达。
除了少数例外,我们的大多数发现都支持适应假说,认为 TE 表观遗传修饰在与基因组防御假说相比较时,具有调节作用。表观遗传修饰的招募可能代表了 TEs 可以为其宿主基因组的调控功能做出贡献的另一种机制。