Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854-8020, USA.
Plant Physiol. 2010 May;153(1):252-9. doi: 10.1104/pp.109.152892. Epub 2010 Mar 12.
In transformed tobacco (Nicotiana tabacum) plastids, we flank the marker genes with recombinase target sites to facilitate their posttransformation excision. The P1 phage loxP sites are identical 34-bp direct repeats, whereas the phiC31 phage attB/attP sites are 54- and 215-bp sequences with partial homology within the 54-bp region. Deletions in the plastid genome are known to occur by recombination between directly repeated sequences. Our objective was to test whether or not the marker genes may be lost by homologous recombination via the directly repeated target sites in the absence of site-specific recombinases. The sequence between the target sites was the bar(au) gene that causes a golden-yellow (aurea) leaf color, so that the loss of the bar(au) gene can be readily detected by the appearance of green sectors. We report here that transplastomes carrying the bar(au) gene marker between recombinase target sites are relatively stable because no green sectors were detected in approximately 36,000 seedlings (Nt-pSS33 lines) carrying attB/attP-flanked bar(au) gene and in approximately 38,000 seedlings (Nt-pSS42 lines) carrying loxP-flanked bar(au) gene. Exceptions were six uniformly green plants in the Nt-pSS42-7A progeny. Sequencing the region of plastid DNA that may derive from the vector indicated that the bar(au) gene in the six green plants was lost by gene conversion using wild-type plastid DNA as template rather than by deletion via directly repeated loxP sites. Thus, the recombinase target sites incorporated in the plastid genome for marker gene excisions are too short to mediate the loss of marker genes by homologous recombination at a measurable frequency.
在转化的烟草(Nicotiana tabacum)质体中,我们在标记基因两侧侧翼排列重组酶靶位点,以促进其转化后切除。P1 噬菌体 loxP 位点是完全相同的 34 个碱基对直接重复序列,而 phiC31 噬菌体 attB/attP 位点是具有 54 个碱基对和 215 个碱基对的序列,在 54 个碱基对区域内具有部分同源性。已知质体基因组中的缺失是通过直接重复序列之间的重组发生的。我们的目标是测试在没有位点特异性重组酶的情况下,标记基因是否可以通过直接重复的靶位点之间的同源重组丢失。靶位点之间的序列是导致金黄色(aurea)叶片颜色的 bar(au)基因,因此 bar(au)基因的丢失可以通过出现绿色区域很容易地检测到。我们在这里报告,携带靶位点之间的 bar(au)基因标记的转质体相对稳定,因为在大约 36000 株携带 attB/attP 侧翼 bar(au)基因的 Nt-pSS33 系和大约 38000 株携带 loxP 侧翼 bar(au)基因的 Nt-pSS42 系中没有检测到绿色区域。Nt-pSS42-7A 后代中有六个均匀绿色的植物例外。对可能来自载体的质体 DNA 区域进行测序表明,这六株绿色植物中的 bar(au)基因是通过使用野生型质体 DNA 作为模板的基因转换而丢失的,而不是通过直接重复的 loxP 位点缺失丢失的。因此,整合到质体基因组中用于标记基因切除的重组酶靶位点太短,无法以可测量的频率介导标记基因的同源重组丢失。