Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
Plant Mol Biol. 2011 Jul;76(3-5):453-61. doi: 10.1007/s11103-010-9724-2. Epub 2010 Dec 31.
Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar(au)) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar(au) gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA(au) transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA(au) genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.
从嵌合叶片再生两周期的植物并在每一周期通过 Southern 杂交分析多个芽,从而获得具有均匀转化质体基因组(ptDNA)的遗传稳定的烟草(Nicotiana tabacum)植株。在温室中对转基因扇形区域的直观检测有助于鉴定转化芽,从而补充培养中重复的盲目纯化循环。此外,它还提供了一种监测质体转化状态的工具。我们目前的可视化标记系统需要两个基因:赋予金黄色叶片表型的 aurea 基因(bar(au))和用于将 bar(au)基因引入质体基因组的壮观霉素抗性(aadA)基因。我们开发了一种新的 aadA 基因,它具有两个功能:它在培养中是常规的可选择 aadA 基因,并且允许通过叶片颜色在温室中检测质体转化扇形区域。叶片色素缺乏的常见原因是影响叶绿素积累的光合作用基因的突变。我们使用不同的方法来实现色素缺乏:通过 aurea aadA(au)转基因对 clpP1 质体基因的转录后干扰。这种干扰产生生长受阻且颜色明显的植物,但保持野生型基因集和光合作用能力。重要的是,当 aurea 基因被去除时,绿色色素沉着和正常生长速率得到恢复。由于 aurea 植物是可行的,因此新的 aadA(au)基因可用于查询大群体中的罕见事件以及在植物体内对质体基因组进行操作。