Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
Med Phys. 2010 Feb;37(2):802-13. doi: 10.1118/1.3298010.
Prostate biopsy, performed using two-dimensional (2D) transrectal ultrasound (TRUS) guidance, is the clinical standard for a definitive diagnosis of prostate cancer. Histological analysis of the biopsies can reveal cancerous, noncancerous, or suspicious, possibly precancerous, tissue. During subsequent biopsy sessions, noncancerous regions should be avoided, and suspicious regions should be precisely rebiopsied, requiring accurate needle guidance. It is challenging to precisely guide a needle using 2D TRUS due to the limited anatomic information provided, and a three-dimensional (3D) record of biopsy locations for use in subsequent biopsy procedures cannot be collected. Our tracked, 3D TRUS-guided prostate biopsy system provides additional anatomic context and permits a 3D record of biopsies. However, targets determined based on a previous biopsy procedure must be transformed during the procedure to compensate for intraprocedure prostate shifting due to patient motion and prostate deformation due to transducer probe pressure. Thus, registration is a critically important step required to determine these transformations so that correspondence is maintained between the prebiopsied image and the real-time image. Registration must not only be performed accurately, but also quickly, since correction for prostate motion and deformation must be carried out during the biopsy procedure. The authors evaluated the accuracy, variability, and speed of several surface-based and image-based intrasession 3D-to-3D TRUS image registration techniques, for both rigid and nonrigid cases, to find the required transformations.
Our surface-based rigid and nonrigid registrations of the prostate were performed using the iterative-closest-point algorithm and a thin-plate spline algorithm, respectively. For image-based rigid registration, the authors used a block matching approach, and for nonrigid registration, the authors define the moving image deformation using a regular, 3D grid of B-spline control points. The authors measured the target registration error (TRE) as the postregistration misalignment of 60 manually marked, corresponding intrinsic fiducials. The authors also measured the fiducial localization error (FLE), the effect of segmentation variability, and the effect of fiducial distance from the transducer probe tip. Lastly, the authors performed 3D principal component analysis (PCA) on the x, y, and z components of the TREs to examine the 95% confidence ellipsoids describing the errors for each registration method.
Using surface-based registration, the authors found mean TREs of 2.13 +/- 0.80 and 2.09 +/- 0.77 mm for rigid and nonrigid techniques, respectively. Using image-based rigid and non-rigid registration, the authors found mean TREs of 1.74 +/- 0.84 and 1.50 +/- 0.83 mm, respectively. Our FLE was 0.21 mm and did not dominate the overall TRE. However, segmentation variability contributed substantially approximately50%) to the TRE of the surface-based techniques. PCA showed that the 95% confidence ellipsoid encompassing fiducial distances between the source and target registra- tion images was reduced from 3.05 to 0.14 cm3, and 0.05 cm3 for the surface-based and image-based techniques, respectively. The run times for both registration methods were comparable at less than 60 s.
Our results compare favorably with a clinical need for a TRE of less than 2.5 mm, and suggest that image-based registration is superior to surface-based registration for 3D TRUS-guided prostate biopsies, since it does not require segmentation.
使用二维(2D)经直肠超声(TRUS)引导进行前列腺活检是前列腺癌明确诊断的临床标准。活检的组织学分析可以揭示癌性、非癌性或可疑的、可能是癌前的组织。在随后的活检过程中,应避免非癌性区域,并精确地重新活检可疑区域,这需要准确的针引导。由于提供的解剖信息有限,使用 2D TRUS 精确引导针是具有挑战性的,并且不能收集用于后续活检过程的活检位置的三维(3D)记录。我们的跟踪式、3D TRUS 引导的前列腺活检系统提供了额外的解剖背景,并允许对活检进行 3D 记录。然而,基于先前活检过程确定的目标必须在过程中进行转换,以补偿由于患者运动引起的前列腺移位和由于换能器探头压力引起的前列腺变形。因此,注册是确定这些转换所必需的关键步骤,以便在预活检图像和实时图像之间保持一致性。注册不仅必须准确,而且还必须快速进行,因为必须在活检过程中对前列腺运动和变形进行校正。作者评估了几种基于表面和基于图像的术中 3D 到 3D TRUS 图像配准技术的准确性、可变性和速度,包括刚性和非刚性情况,以找到所需的转换。
我们的前列腺表面刚性和非刚性配准分别使用迭代最近点算法和薄板样条算法进行。对于基于图像的刚性配准,作者使用了块匹配方法,对于非刚性配准,作者使用了规则的、3D 的 B 样条控制点网格来定义移动图像变形。作者通过测量 60 个手动标记的、对应的固有基准的后配准错位来测量目标配准误差(TRE)。作者还测量了基准定位误差(FLE)、分割变异性的影响以及基准与换能器探头尖端的距离的影响。最后,作者对 TRE 的 x、y 和 z 分量进行了 3D 主成分分析(PCA),以检查每个配准方法的误差的 95%置信椭圆体。
使用基于表面的配准,作者发现刚性和非刚性技术的平均 TRE 分别为 2.13 +/- 0.80 和 2.09 +/- 0.77 毫米。使用基于图像的刚性和非刚性配准,作者发现平均 TRE 分别为 1.74 +/- 0.84 和 1.50 +/- 0.83 毫米。我们的 FLE 为 0.21 毫米,并没有主导整体 TRE。然而,分割变异性对基于表面的技术的 TRE 有很大的贡献(约 50%)。PCA 显示,源和目标注册图像之间的基准距离的 95%置信椭圆体从 3.05 减少到 0.14 厘米 3 ,对于基于表面和基于图像的技术分别为 0.05 厘米 3 。两种配准方法的运行时间都不到 60 秒。
我们的结果与小于 2.5 毫米的 TRE 的临床需求相吻合,并表明基于图像的配准优于基于表面的配准,因为它不需要分割。