Aprend Technology, Mountain View, California 94043, USA.
Med Phys. 2010 Feb;37(2):822-41. doi: 10.1118/1.3284538.
This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting.
A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a "whitened" vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space.
The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal performance across a wide range of operating conditions.
Low energy resolution detectors can be used in energy selective x-ray imaging systems to produce images with near optimal performance.
本文描述了一种使用低能量分辨率探测器实现近最优性能的方法。Tapiovaara 和 Wagner [Phys. Med. Biol. 30, 519-529 (1985)] 表明,使用宽谱源的能量选择 X 射线系统可以产生比使用能量积分或光子计数探测器的传统系统具有更大信噪比 (SNR) 的图像。他们表明 SNR 存在上限,并且可以通过测量全谱信息然后使用最佳的能量相关加权来实现。
通过将统计检测理论应用于基集系数的线积分的抽象向量空间中的两个函数逼近的 X 射线衰减系数,得出一种性能度量。该方法可以利用所有可用的能量相关数据,产生最佳的结果。该方法可用于任何能量选择探测器,不仅适用于使用脉冲高度分析 (PHA) 的探测器,也适用于同时测量总光子数和积分能量的探测器,如 Roessl 等人所讨论的 [Med. Phys. 34, 959-966 (2007)]。介绍了一种改进性能的此类探测器的推广。描述了一种使用在“白化”向量空间中的投影来计算具有最佳 SNR 的图像的方法,该变换使得噪声在两个坐标中是不相关的且具有单位方差。也可以通过在该空间中的投影来计算具有最佳 SNR 的材料取消图像。
通过表明它为具有全能量信息的探测器和传统探测器提供 Tapiovaara-Wagner 最优结果,验证了性能度量。比较了不同类型的探测器与理想 SNR 的性能,作为 X 射线管电压和受检者厚度的函数。结合了两个 bin PHA 与同时测量积分光子能量的探测器在广泛的操作条件下提供接近理想的性能。
低能量分辨率探测器可用于能量选择 X 射线成像系统中,以产生具有近最优性能的图像。